Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Chronobiol Int ; 41(5): 709-724, 2024 May.
Article in English | MEDLINE | ID: mdl-38722075

ABSTRACT

We have investigated the magnitude of circadian variation in Isokinetic and Isometric strength of the knee extensors and flexors, as well as back squat and bench press performance using the MuscleLab force velocity transducer. Ten resistance-trained males (mean±SD: age 21.5 ± 1.1 years; body mass 78.3 ± 5.2 kg; height 1.71 ± 0.07 m) underwent a) three to four familiarization sessions on each dynamometer and b) four sessions at different times of day (03:00, 09:00, 15:00 and 21:00 h). Each session was administered in a counterbalanced order and included a period when Perceived onset of mood states (POMS), then rectal and muscle temperature (Trec, Tm) was measured at rest, after which a 5-min standardized 150 W warm-up was performed on a cycle ergometer. Once completed, Isokinetic (60 and 240°·s-1 for extension and flexion) and Isometric dynamometry with peak torque (PT), time-to-peak-torque (tPT) and peak force (PF) and % activation was measured. Lastly, Trec and Tm were measured before the bench press (at 30, 50 and 70 kg) and back squat (at 40, 60 and 80 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV) and time-to-peak-velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Five-min recovery was allowed between each set with three repetitions being completed. General linear models with repeated measures and cosinor analysis were used to analyse the data. Values for Trec and Tm at rest were higher in the evening compared to morning values (Acrophase Φ: 16:35 and 17:03 h, Amplitude A: 0.30 and 0.23°C, Mesor M: 36.64 and 37.43°C, p < 0.05). Vigor, happy and fatigue mood states responses showed Φ 16:11 and 16:03 h and 02:05 h respectively. Circadian rhythms were apparent for all variables irrespective of equipment used where AF, PF and PT values peaked between 16:18 and 18:34 h; PV, tPV and tPT peaked between 05:54 and 08:03 h (p < 0.05). In summary, circadian rhythms in force output (force, torque, power, and velocity) were shown for isokinetic, isometric dynamometers and complex multi-joint movements (using a linear encoder); where tPV and tPT occur in the morning compared to the evening. Circadian rhythms in strength can be detected using a portable, low-cost instrument that shows similar cosinor characteristics as established dynamometers. Hence, muscle-strength can be measured in a manner that is more directly transferable to the world of athletic and sports performance.


Subject(s)
Circadian Rhythm , Muscle Strength , Muscle, Skeletal , Humans , Male , Circadian Rhythm/physiology , Young Adult , Muscle, Skeletal/physiology , Muscle Strength/physiology , Isometric Contraction/physiology , Muscle Strength Dynamometer , Adult , Torque , Exercise/physiology
2.
J Exp Biol ; 227(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38487901

ABSTRACT

While multiple studies have shown that honey bees and some other flying insects lower their flight metabolic rates when flying at high air temperatures, critics have suggested such patterns result from poor experimental methods as, theoretically, air temperature should not appreciably affect aerodynamic force requirements. Here, we show that apparently contradictory studies can be reconciled by considering the thermal performance curve of flight muscle. We show that prior studies that found no effects of air temperature on flight metabolism of honey bees achieved flight muscle temperatures that were near or on equal, opposite sides of the thermal performance curve. Honey bees vary their wing kinematics and metabolic heat production to thermoregulate, and how air temperature affects the flight metabolic rate of honey bees is predictable using a non-linear thermal performance perspective of honey bee flight muscle.


Subject(s)
Flight, Animal , Insecta , Bees , Animals , Temperature , Flight, Animal/physiology , Energy Metabolism/physiology , Muscles/metabolism
3.
Article in Japanese | WPRIM (Western Pacific) | ID: wpr-1040020

ABSTRACT

This study investigated the physiological responses and effects of exercise training under hypoxic conditions at the skeletal muscle level induced by reducing muscle temperature in cold water environment. Participants were divided into two intervention groups, cooling and control conditions, according to the water temperature of 15°C and 33°C where the training were conducted in. Eight participants in each group performed submaximal cycling exercise in the water for 30 minutes at the lactate threshold (LT) intensity, three times a week for four weeks (12 sessions). LT intensity was assessed at pre- and post-intervention in a 33°C water temperature environment. A progressive load cycling test was performed on land to assess maximal oxygen uptake (VO2max) and Wingate test was conducted to measure anaerobic power. In the cooling group, working muscle deoxygenation increased during submaximal and maximal exercise, suggesting an improvement in the muscle oxygen extraction capacity. However, no effects on aerobic capacity such as VO2max or LT intensity were observed. The improvement in mean power and time to peak during the Wingate test in the cooling group indicated that LT intensity exercise training in a cold water environment would increase anaerobic power.

4.
Eur J Appl Physiol ; 124(5): 1499-1508, 2024 May.
Article in English | MEDLINE | ID: mdl-38129698

ABSTRACT

PURPOSE: Soccer substitutes are exposed to periods of limited activity before entering match-play, likely negating benefits of active warm-ups. This study aimed to determine the effects of using a passive heat intervention following a pre-match, and half-time warm-up, on muscle and core temperature in soccer players during ambient (18 °C) and cold (2 °C) conditions. METHODS: On four occasions, 8 male players, completed a pre-match warm-up, followed by 45 min of rest. Following this, participants completed a half-time re-warm-up followed by an additional 45 min of rest, simulating a full match for an unplaying substitute. During periods of rest, participants wore either standardised tracksuit bottoms (CON), or heated trousers (HEAT), over typical soccer attire. RESULTS: Vastus lateralis temperature declined less in HEAT compared to CON following the 1st half in 2 °C (Δ - 4.39 ± 0.81 vs. - 6.21 ± 1.32 °C, P = 0.002) and 18 °C (Δ - 2.48 ± 0.71 vs. - 3.54 ± 0.88 °C, P = 0.003). These findings were also observed in the 2nd half for the 2 °C (Δ - 4.36 ± 1.03 vs. - 6.26 ± 1.04 °C, P = 0.002) and 18 °C (Δ - 2.85 ± 0.57 vs. - 4.06 ± 1 °C, P = 0.018) conditions. In addition, core temperature declined less in HEAT compared to CON following the 1st (Δ - 0.41 ± 0.25 vs. - 0.84 ± 0.41 °C, P = 0.037) and 2nd (Δ - 0.25 ± 0.33 vs. - 0.64 ± 0.34 °C, P = 0.028) halves of passive rest in 2 °C, with no differences in the 18 °C condition. Perceptual data confirmed that participants were more comfortable in HEAT vs. CON in 2 °C (P < 0.01). CONCLUSIONS: Following active warm-ups, heated trousers attenuate the decline in muscle temperature in ambient and cold environments.


Subject(s)
Hot Temperature , Soccer , Humans , Soccer/physiology , Male , Adult , Body Temperature Regulation/physiology , Body Temperature/physiology , Warm-Up Exercise/physiology , Young Adult , Muscle, Skeletal/physiology , Clothing
5.
Nutrients ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37892517

ABSTRACT

Hyperthermia accelerates dehydration and can lead to a glycolysis malfunction. Therefore, to deeply understand the relationship between dehydration and hyperthermia during exercise, as well as in the recovery time, there might be important factors to improve athletic performance. A systematic review was carried out in different databases using the words "hydration" OR "dehydration" AND "glycogen" OR "glycogenesis" OR "glycogenolysis" AND "muscle" OR "muscle metabolism" OR "cardiovascular system" and adding them to the "topic section" in Web of Science, to "Title/Abstract" in PubMed and to "Abstract" in SPORTDiscus. A total of 18 studies were included in the review and 13 in the meta-analysis. The free statistical software Jamovi was used to run the meta-analysis (version 1.6.15). A total sample of 158 people was included in the qualitative analysis, with a mean age of 23.5 years. Ten studies compared muscle glycogen content after hydration vs. remaining dehydrated (SMD -4.77 to 3.71, positive 80% of estimates, \hat{\mu} = 0.79 (95% CI: -0.54 to 2.12), z = 1.17, p = 0.24, Q-test (Q(9) = 66.38, p < 0.0001, tau2 = 4.14, I2 = 91.88%). Four studies examined the effect of temperature on postexercise muscle glycogen content (SMD -3.14 to -0.63, 100% of estimates being negative, \hat{\mu} = -1.52 (95% CI: -2.52 to -0.53), (z = -3.00, p = 0.003, Q-test (Q(3) = 8.40, p = 0.038, tau2 = 0.68, I2 = 66.81%). In conclusion, both hyperthermia and dehydration may contribute to elevated glycogenolysis during exercise and poor glycogen resynthesis during recovery. Although core and muscle hyperthermia are the key factors in glycogen impairments, they are also directly related to dehydration.


Subject(s)
Glycogen , Hyperthermia, Induced , Humans , Young Adult , Adult , Dehydration , Muscle, Skeletal/physiology
6.
J Sports Sci Med ; 22(2): 175-179, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293429

ABSTRACT

The application of thermal agents via hot packs is a commonly utilized method. However, the time-course changes in the range of motion (ROM), stretch sensation, shear elastic modulus, and muscle temperature during hot pack application are not well understood. This study aimed to investigate the time-course changes in these variables during a 20-minute hot pack application. Eighteen healthy young men (21.1 ± 0.2 years) participated in this study. We measured the dorsiflexion (DF) ROM, passive torque at DF ROM (an indicator of stretch tolerance), and shear elastic modulus (an indicator of muscle stiffness) of the medial gastrocnemius before and every 5 minutes during a 20-minute hot pack application. The results showed that hot pack application for ≥5 minutes significantly (p < 0.01) increased DF ROM (5 minutes: d = 0.48, 10 minutes: d = 0.59, 15 minutes: d = 0.73, 20 minutes: d = 0.88), passive torque at DF ROM (5 minutes: d = 0.71, 10 minutes: d = 0.71, 15 minutes: d = 0.82, 20 minutes: d = 0.91), and muscle temperature (5 minutes: d = 1.03, 10 minutes: d = 1.71, 15 minutes: d = 1.74, 20 minutes: d = 1.66). Additionally, the results showed that hot pack application for ≥5 minutes significantly (p < 0.05) decreased shear elastic modulus (5 minutes: d = 0.29, 10 minutes: d = 0.31, 15 minutes: d = 0.30, 20 minutes: d = 0.31). These results suggest that hot pack application for a minimum 5 minutes can increase ROM and subsequently decrease muscle stiffness.


Subject(s)
Muscle, Skeletal , Male , Humans , Elastic Modulus/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Torque
7.
Healthcare (Basel) ; 10(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36292398

ABSTRACT

We compared the effect of bilateral knee joint cooling with or without a pre-cooling warm-up on sprint cycling performance to a non-cooling control condition. Seventeen healthy young males (25 ± 2 years, 174 ± 6 cm, 70 ± 9 kg) performed three conditions in a counterbalanced order (condition 1: warming + cooling + cycling; condition 2: cooling + cycling; condition 3: cycling). For warming, a single set of cycling intervals (a 10 s sprint with maximal effort followed by a 180 s active recovery; resistive load 4% and 1% body mass for sprint and recovery, respectively) was performed. For cycling, five sets of cycling intervals were performed. For cooling, 20 min of bilateral focal knee joint cooling was applied. Peak and average values of anaerobic capacity and wheel cadence during each set across conditions were statistically compared. There was no condition effect over set (condition × set) in anaerobic capacity (F8,224 < 1.49, p > 0.16) and wheel cadence (F8,224 < 1.48, p > 0.17). Regardless of set (condition effect: F2,224 > 8.64, p < 0.0002), conditions 1 and 2 produced higher values of anaerobic capacity (p ≤ 0.05). Similarly (condition effect: F2,224 > 4.62, p < 0.02), condition 1 showed higher wheel cadence (p < 0.02) than condition 3. A bilateral joint cooling for 20 min with or without pre-cooling warm-up may improve overall sprint cycling capacity during five sets of cycling intervals when compared to the non-cooling condition.

8.
J Physiol Anthropol ; 41(1): 34, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217207

ABSTRACT

The purpose of this study was to compare the effects of ingesting ice slurries with two different carbohydrate contents on body temperatures and the subcutaneous interstitial fluid glucose level during heat exposure. Seven physically active men underwent one of three interventions: the ingestion of 7.5 g/kg of a control beverage (CON: 26°C), a normal-carbohydrate ice slurry (NCIS: -1°C), or a high-carbohydrate ice slurry (HCIS: -5°C). The participants were monitored for a 120-min period that included 10 min of rest, 25 min of exposure to the experimental cooling intervention (during which the beverage was ingested), and 85 min of seated rest in a climate chamber (36°C, 50% relative humidity). The rectal temperature in the HCIS and NCIS trials was lower than that in the CON trial from 40 to 75 min. The infrared tympanic temperature was also lower in the HCIS and NCIS trials than in the CON trial from 20 to 50 min, whereas the deep thigh or mean skin temperatures were not significantly different among the three groups. From 90 to 120 min, the subcutaneous interstitial fluid glucose level in the NCIS trial was lower than that at 65 min; however, reductions were not seen in the HCIS and CON trials. These findings suggest that both HCIS ingestion and conventional NCIS ingestion were effective cooling strategies for reducing thermal strain, while HCIS ingestion may also enable a higher subcutaneous interstitial fluid glucose level to be maintained, ensuring an adequate supply of required muscle substrates.


Subject(s)
Hot Temperature , Ice , Body Temperature/physiology , Body Temperature Regulation/physiology , Extracellular Fluid , Glucose , Humans , Male
9.
Animal ; 16(9): 100620, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35994970

ABSTRACT

Continuous accurate attainment of the body temperature of foals is important to detect early stages of severe heat stress or fever due to a systemic illness. Among a number of methods to measure body temperature, measuring rectal temperature with a digital thermometer is most frequently used due to being relatively fast and simple method. It is also comparatively accurate and correlates well with the core body temperature. However, this method requires restraining the foal for a few seconds to obtain the temperature, and it can be dangerous for the handling person. Percutaneous thermal sensing microchips (PTSMs) are a means of monitoring the body temperature of horses, which offers a non-invasive, hygienic, quick, and accurate way to measure body temperature and provide an identification number for each individual, once it is implanted. This study tested the hypothesis that PTSM has a strong relationship with a conventional body temperature measurement, i.e., measuring rectal temperature with a digital thermometer of foals during summer seasons. Thirty-two foals in three consecutive foaling seasons (2018, 2019, and 2020 season) were implanted a PTSM into the right pectoral muscle, the right splenius muscle, the right gluteal muscle, and the nuchal ligament as early as two weeks after birth. The four PTSM temperatures, rectal temperature, and climate conditions (air temperature, relative humidity, and wet-bulb globe temperature) were obtained simultaneously during the three summer seasons and paired for comparison analysis. Among the PTSM temperatures, the pectoral muscle had the highest correlation and the least differences with rectal temperature. Using PTSM was safe, easy, and reliable for attaining body temperature in foals.


Subject(s)
Body Temperature , Thermometers , Animals , Body Temperature/physiology , Fever/veterinary , Horses , Humans , Seasons , Temperature , Thermometers/veterinary
10.
BMC Sports Sci Med Rehabil ; 14(1): 154, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35964115

ABSTRACT

BACKGROUND: Prior to exercise, a warm-up routine has been suggested to be an imperative factor in task readiness with the anticipation that it will enhance performance. One of the key benefits of a warm-up is the increase in muscle and core temperature, which can be achieved in a variety of ways. An effective way to achieve improvements in core and muscle temperature is by performing an active warm-up. However, lengthy transition periods between an active warm-up and exercise performance are known to cause a decline in core and muscle temperature, thereby reducing performance capability. As such, methods are needed to assist athletes during transition periods, to maintain the benefits of a warm-up with the aim of optimising performance. Accordingly, the purpose of this review is to systematically analyse the evidence base that has investigated the use of passive heating to aide sporting performance when a transition period is experienced. METHODS: A systematic review and meta-analysis were undertaken following relevant studies being identified using PubMed, Web of Science, and EBSCO. Studies investigating the effects of passive heating strategies during the transition period between an active warm-up and exercise performance were included. The quality of the included studies were assessed by two independent reviewers using a modified version of the Physiotherapy Evidence Database scale. RESULTS: Seven studies, all high quality (mean = 7.6), reported sufficient data (quality score > 5) on the effects of passive heating strategies on exercise performance, these studies consisted of 85 well-trained athletes (78 male and 7 female). Passive heating strategies used between an active warm-up and exercise, significantly increased peak power output in all studies (ES = 0.54 [95% CI 0.17 to 0.91]). However, only a favourable trend was evident for exercise performance (ES = 1.07 [95% CI - 0.64 to 0.09]). CONCLUSIONS: Based upon a limited number of well-conducted, randomised, controlled trials, it appears that passive heating strategies used between an active warm-up and exercise have a positive impact on peak power output. Although, additional research is necessary to determine the optimum procedure for passive warm-up strategies.

11.
Eur J Appl Physiol ; 122(10): 2153-2162, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35771296

ABSTRACT

Declines in muscle force, power, and contractile function can be observed in older adults, clinical populations, inactive individuals, and injured athletes. Passive heating exposure (e.g., hot baths, sauna, or heated garments) has been used for health purposes, including skeletal muscle treatment. An acute increase in muscle temperature by passive heating can increase the voluntary rate of force development and electrically evoked contraction properties (i.e., time to peak twitch torque, half-relation time, and electromechanical delay). The improvements in the rate of force development and evoked contraction assessments with increased muscle temperature after passive heating reveal peripheral mechanisms' potential role in enhancing muscle contraction. This review aimed to summarise, discuss, and highlight the potential role of an acute passive heating stimulus on skeletal muscle cells to improve contractile function. These mechanisms include increased calcium kinetics (release/reuptake), calcium sensitivity, and increased intramuscular fluid.


Subject(s)
Calcium , Muscle Contraction , Aged , Humans , Isometric Contraction/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Temperature , Torque
12.
J Exp Biol ; 225(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35546297

ABSTRACT

Endotherms experience temperature variation among body regions, or regional heterothermy, despite maintaining high core body temperatures. Bat forelimbs are elongated to function as wings, which makes them vulnerable to heat loss and exaggerates regional heterothermy. A tropical bat species, Carollia perspicillata, flies with distal wing muscles that are substantially (>10°C) cooler than proximal wing muscles and significantly less temperature sensitive. We hypothesized that the difference between proximal and distal wing muscles would be even more extreme in a temperate bat species that is capable of flight at variable environmental temperatures. We measured the contractile properties of the proximal pectoralis muscle and distal extensor carpi radialis muscle at a range of temperatures in the big brown bat, Eptesicus fuscus, and compared their thermal dependence with that of the same muscles in C. perspicillata. We found that, overall, temperature sensitivities between species were remarkably similar. The sole exception was the shortening velocity of the pectoralis muscle in E. fuscus, which was less temperature sensitive than in C. perspicillata. This decreased temperature sensitivity in a proximal muscle runs counter to our prediction. We suggest that the relative lability of body temperature in E. fuscus may make better pectoralis function at low temperatures advantageous.


Subject(s)
Chiroptera , Animals , Body Temperature Regulation , Chiroptera/physiology , Muscle Contraction , Muscle, Skeletal/physiology , Wings, Animal/physiology
13.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R123-R132, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35579335

ABSTRACT

Although heat exposure has been shown to increase the skeletal rate of force development (RFD), the underlying processes remain unknown. This study investigated the effect of heat on gastrocnemius medialis (GM) muscle-tendon properties and interactions. Sixteen subjects performed electrically evoked and voluntary contractions combined with ultrafast ultrasound under thermoneutral [control (CON): 25.8 ± 1.8°C, core temperature 37.0 ± 0.3°C, muscle temperature 34.0 ± 1.1°C] and passive heat exposure [hot (HOT): 47.4 ± 1.8°C, core temperature 38.4 ± 0.3°C, muscle temperature 37.0 ± 0.8°C] conditions. Maximal voluntary force changes did not reach statistical significance (-5.0 ± 11.3%, P = 0.052) whereas voluntary activation significantly decreased (-4.6 ± 8.7%, P = 0.038) in HOT. Heat exposure significantly increased voluntary RFD before 100 ms from contraction onset (+48.2 ± 62.7%; P = 0.013), without further changes after 100 ms. GM fascicle dynamics during electrically evoked and voluntary contractions remained unchanged between conditions. Joint velocity at a given force was higher in HOT (+7.1 ± 6.6%; P = 0.004) but the fascicle force-velocity relationship remained unchanged. Passive muscle stiffness and active tendon stiffness were lower in HOT than CON (P ≤ 0.030). This study showed that heat-induced increases in early voluntary RFD may not be attributed to changes in contractile properties. Late voluntary RFD was unaltered, possibly due to decreased soft tissues' stiffness in heat. Further investigations are required to explore the influence of neural drive and motor unit recruitment in the enhancement of explosive strength elicited by heat exposure.


Subject(s)
Isometric Contraction , Tendons , Humans , Isometric Contraction/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Tendons/diagnostic imaging , Tendons/physiology , Ultrasonography
14.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R757-R769, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33789459

ABSTRACT

Prior reports show that whole body heat stress attenuates the pressor response to exercise in young healthy subjects. The effects of moderate whole body heating (WBH; e.g., increase in internal temperature Tcore of ∼0.4°C-0.5°C) or limb heating on sympathetic and cardiovascular responses to exercise in older healthy humans remain unclear. We examined the muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), and heart rate (HR) in 14 older (62 ± 2 yr) healthy subjects during fatiguing isometric handgrip exercise and postexercise circulatory occlusion (PECO). The protocol was performed under normothermic, moderate WBH, and local limb (i.e., forearm) heating conditions during three visits. During the mild WBH stage (increase in Tcore of <0.3°C), HR increased, whereas BP and MSNA decreased from baseline. Under the moderate WBH condition (increase in Tcore of ∼0.4°C), BP decreased, HR increased, and MSNA was unchanged from baseline. Compared with the normothermic trial, the absolute MAP during fatiguing exercise and PECO was lower during the WBH trial. Moreover, MSNA and MAP responses (i.e., changes) to fatiguing exercise were also less than those seen during the normothermic trial. Limb heating induced a similar increase in forearm muscle temperature to that seen in the WBH trial (∼0.7°C-1.5°C). Limb heating did not alter resting MAP, HR, or MSNA. The MSNA and hemodynamic responses to exercise in the limb heating trial were not different from those in the normothermic trial. These data suggest that moderate WBH attenuates MSNA and BP responses to exercise in older healthy humans.


Subject(s)
Aging/physiology , Hand Strength/physiology , Heating , Muscle, Skeletal/physiology , Reflex/physiology , Adult , Aged , Blood Pressure/physiology , Exercise/physiology , Heart Rate/physiology , Heat Stress Disorders , Humans , Male , Sympathetic Nervous System/physiology , Vasoconstrictor Agents/pharmacology
15.
Acta Physiol (Oxf) ; 231(4): e13625, 2021 04.
Article in English | MEDLINE | ID: mdl-33570804

ABSTRACT

AIM: This study sought to provide a statistically robust reference for measures of mitochondrial function from standardized high-resolution respirometry with permeabilized human skeletal muscle (ex vivo), compare analogous values obtained via indirect calorimetry, arterial-venous O2 differences and 31 P magnetic resonance spectroscopy (in vivo) and attempt to resolve differences across complementary methodologies as necessary. METHODS: Data derived from 831 study participants across research published throughout March 2009 to November 2019 were amassed to examine the biological relevance of ex vivo assessments under standard conditions, ie physiological temperatures of 37°C and respiratory chamber oxygen concentrations of ~250 to 500 µmol/L. RESULTS: Standard ex vivo-derived measures are lower (Z ≥ 3.01, P ≤ .0258) en masse than corresponding in vivo-derived values. Correcting respiratory values to account for mitochondrial temperatures 10°C higher than skeletal muscle temperatures at maximal exercise (~50°C): (i) transforms data to resemble (Z ≤ 0.8, P > .9999) analogous yet context-specific in vivo measures, eg data collected during maximal 1-leg knee extension exercise; and (ii) supports the position that maximal skeletal muscle respiratory rates exceed (Z ≥ 13.2, P < .0001) those achieved during maximal whole-body exercise, e.g. maximal cycling efforts. CONCLUSION: This study outlines and demonstrates necessary considerations when actualizing the biological relevance of human skeletal muscle respiratory control, metabolic flexibility and bioenergetics from standard ex vivo-derived assessments using permeabilized human muscle. These findings detail how cross-procedural comparisons of human skeletal muscle mitochondrial function may be collectively scrutinized in their relationship to human health and lifespan.


Subject(s)
Muscle, Skeletal , Oxygen Consumption , Energy Metabolism , Exercise , Humans , Mitochondria/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism
16.
Exp Physiol ; 106(1): 200-211, 2021 01.
Article in English | MEDLINE | ID: mdl-31912952

ABSTRACT

NEW FINDINGS: What is the central question of this study? How do temperature manipulations affect motor unit (MU) properties during submaximal contractions to the same relative percentage of maximal force? What is the main finding and its importance? MU recruitment patterns are affected by temperature manipulations at the forearm. However, the relationship between MU potential amplitude and recruitment threshold indicates no change to the order or recruitment. Additionally, the MU potential amplitude and firing rate relationship was affected by temperature, suggesting that smaller MUs are more affected by temperature changes than larger MUs. ABSTRACT: Temperature impacts muscle contractile properties, such that experiments with workloads based on thermoneutral values will produce different relative intensities if maximal force changes due to muscle temperature. We investigated how temperature affected motor unit (MU) properties with contractions performed at the same normalized percentage of maximal force. Twenty participants (10 females) completed evoked, maximal, and trapezoidal voluntary contractions during thermoneutral-, hot-, and cold-temperature conditions. Forearm temperature was established using 25 min of neutral (∼32°C), hot (∼44°C) or cold (∼13°C) water circulated through a tube-lined sleeve. Flexor carpi radialis MU properties were assessed with contractions at 30% and 60% MVC relative to each temperature using surface electromyography decomposition. Changes to contractile properties and electromechanical delay from the evoked twitch suggest that muscle contractility was changed from the thermal manipulations (effect size (d) ≥ 0.42, P < 0.05). Maximal force was not different between neutral and hot conditions (d = 0.16, P > 0.05) but decreased in the cold (d ≥ 0.34, P < 0.05). For both contraction intensities, MU potential (MUP) amplitude was larger and duration was longer in the cold compared to neutral and hot conditions (d ≥ 1.24, P < 0.05). Cumulative probability density for the number of MUs recruited revealed differences in MU recruitment patterns among temperature conditions. The relationship between MU recruitment threshold and firing rate or MUP amplitude was not different among temperature conditions (P > 0.05); however, the relationship between MUP amplitude and firing rate was (P < 0.05). Local temperature manipulations appear to affect MU recruitment patterns, which may act as compensatory mechanisms to the changes in muscle viscosity and contractile properties due to local temperature changes.


Subject(s)
Forearm/physiology , Heating , Isometric Contraction/physiology , Muscle Contraction/physiology , Recruitment, Neurophysiological/physiology , Action Potentials/physiology , Adult , Cold Temperature , Female , Heating/methods , Humans , Male , Motor Neurons/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Young Adult
17.
J Appl Physiol (1985) ; 130(2): 290-297, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33180642

ABSTRACT

The present study aimed to determine the effect of hyperthermia on both electrochemical and mechanical components of the electromechanical delay (EMD), using very-high-frame-rate ultrasound. Electrically evoked peak twitch force, EMD, electrochemical (Dm; i.e., delay between stimulation and muscle fascicle motion), and mechanical (Tm; i.e., delay between fascicle motion and force production onset) components of EMD were assessed in 16 participants. Assessments were conducted in a control ambient environment (CON; 26°C, 34% relative humidity) and in a hot ambient environment (HOT; 46-50°C, 18% relative humidity, after ∼127 min of heat exposure). Following heat exposure, gastrocnemius medialis temperature was 37.0 ± 0.6°C in HOT vs. 34.0 ± 0.8°C in CON (P < 0.001). EMD was shorter (9.4 ± 0.8 ms) in HOT than in CON (10.8 ± 0.6 ms, P < 0.001). Electrochemical processes were shorter in HOT than in CON (4.0 ± 0.8 ms vs. 5.5 ± 0.9 ms, respectively, P < 0.001), whereas mechanical processes were unchanged (P = 0.622). These results demonstrate that hyperthermia reduces electromechanical delay via accelerated electrochemical processes, whereas force transmission along the active and passive parts of the series elastic component is not affected following heat exposure. The present study demonstrates that heat exposure accelerates muscle contraction thanks to faster electrochemical processes. Further investigations during voluntary contractions would contribute to better understand how these findings translate into motor performance.NEW & NOTEWORTHY Hyperthermia (targeted core temperature: 38.5°C) reduces the time between gastrocnemius medialis stimulation and the onset of plantar flexor force production in vivo. This reduction in electromechanical delay is concomitant to an earlier motion of muscle fascicle compared with thermoneutral environment. However, hyperthermia has no impact on the duration of force transmission along aponeurosis and tendon, thereby reflecting different effects of heat exposure on contractile and elastic properties of the muscle-tendon unit.


Subject(s)
Hyperthermia , Muscle Contraction , Electromyography , Humans , Isometric Contraction , Muscle, Skeletal/diagnostic imaging , Tendons , Ultrasonography
18.
J Sports Sci Med ; 19(4): 714-720, 2020 12.
Article in English | MEDLINE | ID: mdl-33239945

ABSTRACT

Jump performance is affected by warm-up intensity and body temperature, but the time course effects have not been thoroughly investigated. The purpose of this study was to investigate time course effects on jump performance after warm-up at different intensities. Nine male athletes (age: 20.9 ± 1.0 years; height: 1.75 ± 0.03 m; weight: 66.4 ± 6.3 kg; mean ± SD) volunteered for this study. The participants performed three warm-ups at different intensities: 15 min at 80% VO2 max, 15 min at 60% VO2 max, and no warm-up (control). After each warm-up, counter movement jump (CMJ) height, vastus lateralis temperature, heart rate and subjective fatigue level were measured at three intervals: immediately after warm-up, 10 min after, and 20 min after, respectively. Significant main effects and interactions were found for muscle temperature (intensity: p < 0.01, η2p = 0.909; time: p < 0.01, η2p = 0.898; interaction: p < 0.01, η2p = 0.917). There was a significant increase of muscle temperature from the baseline after warm-up, which lasted for 20 min after warm-up with 80% VO2 max and 60% VO2 max (p < 0.01). Muscle temperature was significantly higher with warm-up at 80% VO2 max than other conditions (P < 0.01). Significant main effects and interactions for CMJ height were found (intensity: p < 0.01, η2p = 0.762; time: p < 0.01, η2p = 0.810; interaction: p < 0.01, η2p = 0.696). Compared with the control conditions, CMJ height after 80% VO2 max and 60% VO2 max warm-ups were significantly higher (p < 0.01 and p < 0.05, respectively). CMJ height at 20 min after warm-up was significantly higher for 80% VO2 max warm-up than for 60% VO2 max warm-up (p < 0.01). However, CMJ height at 10 min after 60% VO2 max warm-up was not significantly different from the baseline (p < 0.05). These results showed that both high and moderate intensity warm-up can maintain an increase in muscle temperature for 20 min. Jump performance after high-intensity warm-up was increased for 20 min compared to a moderate intensity warm-up.


Subject(s)
Athletic Performance/physiology , Muscle, Skeletal/physiology , Time Factors , Warm-Up Exercise , Athletes , Body Temperature , Cross-Over Studies , Exercise Test , Humans , Male , Movement , Oxygen Consumption , Young Adult
19.
Front Physiol ; 11: 942, 2020.
Article in English | MEDLINE | ID: mdl-32848871

ABSTRACT

The purpose of this study was to determine the effects of one-time acute heat treatment (HT) on the exaggerated exercise pressor reflex in a model of peripheral arterial insufficiency induced by ligation of the femoral artery and was to further examine the underlying mechanism of ATP-P2X3 signal activity during this process. The blood pressure (BP) response to static muscle contraction and muscle tendon stretch was recorded to determine the exercise pressor reflex. Also, αß-methylene ATP (αß-me ATP) was injected into the arterial blood supply of the hindlimb muscles to stimulate P2X3 receptors in the muscle afferent nerves. To process one-time acute HT, a heating pad was placed locally on the hindlimb and the muscle temperature (Tm) was increased by ~1.5°C and maintained for 5 min. Compared with control rats, a greater mean arterial pressure (MAP) response to muscle contraction was observed in rats with femoral occlusion in a pre-heat control session (28 ± 2 mmHg in occluded rats/n = 12 vs. 18 ± 2 mmHg in control rats/n = 9; p < 0.05). The one-time acute HT attenuated the amplification of the BP response in rats with femoral artery occlusion (MAP response: 19 ± 8 mmHg in occluded rats + HT/n = 11; p < 0.05 vs. occluded rats). In contrast, HT did not significantly attenuate amplification of MAP response to muscle stretch and αß-me ATP injection in rats with femoral artery occlusion and controls (all p > 0.05). Our data suggest that one-time acute HT selectively attenuates the amplified pressor response induced by activation of the metabolic and mechanical components of the reflex in rats after femoral artery occlusion. The suppressing effects of acute HT on the exaggerated exercise pressor reflex are likely mediated through a reduction in metabolites (e.g., ATP) stimulating the muscle afferent nerves in contracting muscle, but unlikely through direct alteration of P2X receptors per se.

20.
Biol Lett ; 15(9): 20190530, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31506035

ABSTRACT

Many endothermic animals experience variable limb temperatures, even as they tightly regulate core temperature. The limbs are often cooler than the core at rest, but because the large locomotor muscles of the limbs produce heat during exercise, they are thought to operate at or above core temperature during activity. Bats, small-bodied flying mammals with greatly elongated forelimbs, possess wings with large surfaces lacking any insulating fur. We hypothesized that during flight the relatively small muscles that move the elbow and wrist operate below core body temperature because of elevated heat loss. We measured muscle temperature continuously in the small fruit bat Carollia perspicillata before and during wind tunnel flights, and discretely in diverse bats at rest in Belize. We found that bats maintained high rectal temperatures, but that there was a steep proximal-to-distal gradient in wing muscle temperature. Forearm muscles were 4-6°C cooler than rectal temperature at rest and approximately 12°C cooler during flights at an air temperature of 22°C. These findings invite further study into how bats and other endotherms maintain locomotor performance in variable environments, when some muscles may be operating at low temperatures that are expected to slow contractile properties.


Subject(s)
Chiroptera , Animals , Body Temperature Regulation , Flight, Animal , Muscle Contraction , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL