Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
J Biol Chem ; 298(2): 101574, 2022 02.
Article in English | MEDLINE | ID: mdl-35007536

ABSTRACT

The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.


Subject(s)
Dexamethasone , Point Mutation , Receptors, Glucocorticoid , Animals , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Ligands , Mice , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
3.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681256

ABSTRACT

Recently, we have reported that non-hydroxamate thiazolidinedione (TZD) analogs are capable of inhibiting human deacetylase 4 (HDAC4). This study aims at the dissection of the molecular determinants and kinetics of the molecular recognition of TZD ligands by HDAC4. For this purpose, a structure activity relationship analysis of 225 analogs was combined with a comprehensive study of the enzyme and binding kinetics of a variety of HDAC4 mutant variants. The experimental data were rationalized by docking to the two major conformations of HDAC4. TZD ligands are competitive inhibitors and bind via a two-step mechanism involving principal molecular recognition and induced fit. The residence time of 24 g is (34 ± 3) min and thus much larger than that of the canonical pan-HDAC inhibitor SAHA ((5 ± 2) min). Importantly, the binding kinetics can be tuned by varying the structure of the CAP group.

4.
Eur J Neurol ; 28(4): 1188-1197, 2021 04.
Article in English | MEDLINE | ID: mdl-33175450

ABSTRACT

OBJECTIVE: We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature. METHODS: A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing. In addition, an extensive literature search to identify original articles (published before 10 August 2020) reporting mutations in TOR1A, THAP1 or GNAL associated to dystonia was performed. RESULTS: Pathogenic or likely pathogenic variants in TOR1A, THAP1 and GNAL were identified in 0.48%, 0.57% and 0.29% of our patients, respectively. Five patients carried the variation p.Glu303del in TOR1A. A very rare variant in GNAL (p.Ser238Asn) was found as a putative risk factor for dystonia. In the literature, variations in TOR1A, THAP1 and GNAL accounted for about 6%, 1.8% and 1.1% of published dystonia patients, respectively. CONCLUSIONS: There is a different genetic contribution to dystonia of these three genes in our patients (about 1.3% of patients) and in the literature (about 3.6% of patients), probably due the high proportion of adult-onset cases in our cohort. As regards age at onset, site of dystonia onset, and final distribution, in our population there is a clear differentiation between DYT-TOR1A and DYT-GNAL, with DYT-THAP1 likely to be an intermediate phenotype.


Subject(s)
Dystonia , Dystonic Disorders , Adult , Apoptosis Regulatory Proteins/genetics , DNA-Binding Proteins/genetics , Dystonia/epidemiology , Dystonia/genetics , Dystonic Disorders/epidemiology , Dystonic Disorders/genetics , Humans , Molecular Chaperones/genetics , Mutation , Spain/epidemiology
5.
Biochim Biophys Acta Bioenerg ; 1860(8): 679-687, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31251901

ABSTRACT

Functioning as a nanomotor, ATP synthase plays a vital role in the cellular energy metabolism. Interactions at the rotor and stator interface are critical to the energy transmission in ATP synthase. From mutational studies, we found that the γC87K mutation impairs energy coupling between proton translocation and nucleotide synthesis/hydrolysis. An additional glutamine mutation at γR242 (γR242Q) can restore efficient energy coupling to the γC87K mutant. Arrhenius plots and molecular dynamics simulations suggest that an extra hydrogen bond could form between the side chains of γC87K and ßTPE381 in the γC87K mutant, thus impeding the free rotation of the rotor complex. In the enzyme with γC87K/γR242Q double mutations, the polar moiety of γR242Q side chain can form a hydrogen bond with γC87K, so that the amine group in the side chain of γC87K will not hydrogen-bond with ßE381. As a conclusion, the intra-subunit interaction between positions γC87 and γR242 modulates the energy transmission in ATP synthase. This study should provide more information of residue interactions at the rotor and stator interface in order to further elucidate the energetic mechanism of ATP synthase.


Subject(s)
Escherichia coli/enzymology , Proton-Translocating ATPases/metabolism , Amino Acids/genetics , Biocatalysis , Energy Metabolism , Escherichia coli Proteins , Hydrogen Bonding , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Subunits/metabolism , Proton-Translocating ATPases/chemistry
6.
Molecules ; 23(2)2018 Jan 27.
Article in English | MEDLINE | ID: mdl-29382060

ABSTRACT

Predicting how a point mutation alters a protein's stability can guide pharmaceutical drug design initiatives which aim to counter the effects of serious diseases. Conducting mutagenesis studies in physical proteins can give insights about the effects of amino acid substitutions, but such wet-lab work is prohibitive due to the time as well as financial resources needed to assess the effect of even a single amino acid substitution. Computational methods for predicting the effects of a mutation on a protein structure can complement wet-lab work, and varying approaches are available with promising accuracy rates. In this work we compare and assess the utility of several machine learning methods and their ability to predict the effects of single and double mutations. We in silico generate mutant protein structures, and compute several rigidity metrics for each of them. We use these as features for our Support Vector Regression (SVR), Random Forest (RF), and Deep Neural Network (DNN) methods. We validate the predictions of our in silico mutations against experimental Δ Δ G stability data, and attain Pearson Correlation values upwards of 0.71 for single mutations, and 0.81 for double mutations. We perform ablation studies to assess which features contribute most to a model's success, and also introduce a voting scheme to synthesize a single prediction from the individual predictions of the three models.


Subject(s)
Decision Trees , Mutation , Neural Networks, Computer , Proteins/chemistry , Support Vector Machine , Amino Acid Substitution , Computer Simulation , Protein Conformation , Protein Stability , Thermodynamics
7.
Protein J ; 34(6): 411-20, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26510656

ABSTRACT

Uridine-cytidine kinase catalyzes phosphorylation of the pyrimidine nucleosides uridine and cytidine and plays an important role in nucleotide metabolism. However, the detailed molecular mechanism of these reactions remains to be elucidated. Here, we determined the structure of the ternary complex of Uridine-cytidine kinase from Thermus thermophilus HB8 with both cytidine and ß,γ-methyleneadenosine 5'-triphosphate, a non-hydrolysable ATP analogue. Substrate binding is accompanied by substantial domain movement that allows the substrate-binding cleft to close. The terminal phosphodiester bond of the ATP analogue is in an ideal location for an inline attack of the 5'-hydroxyl group of cytidine. Asp40 is located near the 5'-hydroxyl group of cytidine. Mutation of this conserved residue to Asn or Ala resulted in a complete loss of enzyme activity, which is consistent with the notion that Asp40 acts as a general base that activates the 5'-hydroxyl group of cytidine. The pH profile of the activity showed an apparent pK a value of 7.4. Based on this structure, a likely mechanism of the catalytic step is discussed.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Thermus thermophilus/enzymology , Uridine Kinase/chemistry , Uridine Kinase/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Pyrimidine Nucleosides , Sequence Alignment , Thermus thermophilus/genetics , Uridine Kinase/genetics
8.
Bioinformation ; 8(15): 720-1, 2012.
Article in English | MEDLINE | ID: mdl-23055617

ABSTRACT

The role of hydrophobic force in biological function through the formation of several local macro-molecular structures is evident. Carbon is the element that contributes to biological function in living systems. We show that carbon distribution is related to protein activity using an example. The carbon distribution profile is foreseen to help undestand unfolded and misfolded regions of protein structures. The carbon distribution profile in a toxin protein that is found associated with the toxic shock syndrome is described in this study. The carbon profile provides insight to the association of specific residues responsible for toxicity.

9.
Bioinformation ; 8(11): 508-12, 2012.
Article in English | MEDLINE | ID: mdl-22829720

ABSTRACT

Carbon distribution is responsible for stability and structure of proteins. Arrangement of carbon along the protein sequence is depends on how the amino acids are organized and is guided by mRNAs. An atomic level revision is important for understanding these codes. This will ultimately help in identification of disorders and suggest mutations. For this purpose a carbon distribution analysis program has been developed. This program captures the hydrophobic / hydrophilic / disordered regions in a protein. The program gives accurate results. The calculations are precise and sensitive to single amino acid resolution. This program is to help in mutational studies leading to protein stabilisation.

SELECTION OF CITATIONS
SEARCH DETAIL