Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 294(28): 10846-10862, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31138649

ABSTRACT

Cell migration is essential to embryonic development, wound healing, and cancer cell dissemination. Cells move via leading-edge protrusion, substrate adhesion, and retraction of the cell's rear. The molecular mechanisms by which extracellular cues signal to the actomyosin cytoskeleton to control these motility mechanics are poorly understood. The growth factor-responsive and oncogenically activated protein extracellular signal-regulated kinase (ERK) promotes motility by signaling in actin polymerization-mediated edge protrusion. Using a combination of immunoblotting, co-immunoprecipitation, and myosin-binding experiments and cell migration assays, we show here that ERK also signals to the contractile machinery through its substrate, p90 ribosomal S6 kinase (RSK). We probed the signaling and migration dynamics of multiple mammalian cell lines and found that RSK phosphorylates myosin phosphatase-targeting subunit 1 (MYPT1) at Ser-507, which promotes an interaction of Rho kinase (ROCK) with MYPT1 and inhibits myosin targeting. We find that by inhibiting the myosin phosphatase, ERK and RSK promote myosin II-mediated tension for lamella expansion and optimal edge dynamics for cell migration. These findings suggest that ERK activity can coordinately amplify both protrusive and contractile forces for optimal cell motility.


Subject(s)
Cell Movement/physiology , MAP Kinase Signaling System/physiology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Cytoskeleton/metabolism , Cytoskeleton/physiology , Humans , Muscle Contraction , Myosin-Light-Chain Phosphatase/metabolism , Myosin-Light-Chain Phosphatase/physiology , Myosins/metabolism , Phosphorylation , Protein Binding , Ribosomal Protein S6 Kinases, 90-kDa/physiology , Signal Transduction , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL