Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 281(Pt 1): 136158, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362444

ABSTRACT

Nasal delivery has emerged as a non-invasive route to administer drugs for brain delivery. In particular, polyelectrolyte complexes-based nanocarriers have been demonstrated to be advantageous for nasal delivery of peptide drugs and vaccines. Pramlintide (Pram) is a peptide that emerges as a novel neuroprotective strategy to modify the pathogenesis of Alzheimer's disease (AD). In this study, we examined the effects of the intranasal administration of dextran-pramlintide polyelectrolyte complex-coated nanoemulsions (PEC-NEDexS/Pram) in an experimental model of AD induced by intracerebroventricular (i.c.v.) infusion of amyloid-beta (Aß1-42) peptide in mice. PEC-NEDexS/Pram displayed droplet size lower than 200 nm and a negatively charged surface. The locomotor activity of the animals was not affected by the i.c.v. Aß1-42 injection or Pram treatment. On the other hand, the intranasal administration of PEC-NEDexS/Pram at a dose of 100 µg/day for 14 consecutive days restored the impairment induced by Aß1-42 injection in the discriminative learning and the short-term spatial reference memory of mice. However, Pram treatment did not alter the Aß1-42-induced anhedonic behavior, oxidative stress parameters, or the pre-synaptic SNAP-25 and post-synaptic PSD-95 levels in the hippocampus and prefrontal cortex. These findings indicate cognitive-enhancing properties of intranasal Pram administration in an animal model of AD.

2.
Int J Biol Macromol ; 265(Pt 2): 131023, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513897

ABSTRACT

The interactions between bovine serum albumin (BSA) and mycophenolic acid (MPA) were investigated in silico through molecular docking and in vitro, using fluorescence spectroscopy. Dynamic light scattering and scanning electron microscopy were used to figure out the structure of MPA-Complex (MPA-C). The binding affinity between MPA and BSA was determined, yielding a Kd value of (12.0 ± 0.7) µM, and establishing a distance of 17 Å between the BSA and MPA molecules. The presence of MPA prompted protein aggregation, leading to the formation of MPA-C. The cytotoxicity of MPA-C and its ability to fight Junín virus (JUNV) were tested in A549 and Vero cell lines. It was found that treating infected cells with MPA-C decreased the JUNV yield and was more effective than free MPA in both cell line models for prolonged time treatments. Our results represent the first report of the antiviral activity of this type of BSA-MPA complex against JUNV, as assessed in cell culture model systems. MPA-C shows promise as a candidate for drug formulation against human pathogenic arenaviruses.


Subject(s)
Junin virus , Serum Albumin, Bovine , Humans , Mycophenolic Acid , Molecular Docking Simulation , Virus Replication , Antiviral Agents/pharmacology
3.
ACS Appl Bio Mater ; 6(11): 4714-4727, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37863908

ABSTRACT

Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.


Subject(s)
Allylamine , Polyphosphates , Drug Carriers , Polymers
4.
Nanomaterials (Basel) ; 13(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37887952

ABSTRACT

Myc and Max are essential proteins in the development of prostate cancer. They act by dimerizing and binding to E-box sequences. Disrupting the Myc:Max heterodimer interaction or its binding to E-box sequences to interrupt gene transcription represent promising strategies for treating cancer. We designed novel pMyc and pMax peptides from reference sequences, and we evaluated their ability to bind specifically to E-box sequences using an electrophoretic mobility shift assay (EMSA). Then, we assembled nanosystems (NSs) by coupling pMyc and pMax peptides to AuNPs, and determined peptide conjugation using UV-Vis spectroscopy. After that, we characterized the NS to obtain the nanoparticle's size, hydrodynamic diameter, and zeta potential. Finally, we evaluated hemocompatibility and cytotoxic effects in three different prostate adenocarcinoma cell lines (LNCaP, PC-3, and DU145) and a non-cancerous cell line (Vero CCL-81). EMSA results suggests peptide-nucleic acid interactions between the pMyc:pMax dimer and the E-box. The hemolysis test showed little hemolytic activity for the NS at the concentrations (5, 0.5, and 0.05 ng/µL) we evaluated. Cell viability assays showed NS cytotoxicity. Overall, results suggest that the NS with pMyc and pMax peptides might be suitable for further research regarding Myc-driven prostate adenocarcinomas.

5.
Food Res Int ; 148: 110597, 2021 10.
Article in English | MEDLINE | ID: mdl-34507742

ABSTRACT

This work is aimed to obtain nanocomplexes based on egg white protein nanoparticles (EWPn) and bioactive compounds (BC), carvacrol (CAR), thymol (THY) and trans-cinnamaldehyde (CIN), and evaluate their application as antifungal edible coatings on preservative-free breads. The nanocomplex formation was studied through stoichiometry, affinity, colloidal behavior, morphology, and encapsulation efficiency (EE, %). Rounded-shape nanocomplexes with particle sizes < 100 nm were obtained. The EE values were similar for all BC (>83%). Furthermore, the in vitro antifungal activity of the nanocomplexes was verified using the Aspergillus niger species. The nanocomplexes were applied as coatings onto the crust of preservative-free breads, which were stored for 7 days (at 25 °C). The coatings had no impact on the physicochemical properties of the bread loaves (moisture, aw, texture, and color). Finally, the coatings based on EWPn-THY and EWPn-CAR nanocomplexes showed higher antifungal efficacy, extending the bread shelf life after 7 days.


Subject(s)
Edible Films , Nanoparticles , Antifungal Agents/pharmacology , Bread , Egg Proteins , Food Preservatives/pharmacology
6.
Nanomaterials (Basel) ; 9(7)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261871

ABSTRACT

We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to -43 mV, respectively. Turbidimetry and nanoparticle concentration analyses demonstrated the high capacity of the INC to interact with increasing concentrations of LMWHA, improving the yield of production of the nanostructures. Interestingly, once the selected formulations of INC were freeze-dried, only those comprising a larger excess of LMWHA could form reproducible sponge formulations, as seen with the naked eye. This optical behavior was consistent with the scanning transmission electron microscopy (STEM) images, which showed a tendency of the particles to agglomerate when an excess of LMWHA was present. Mechanical characterization evidenced low stiffness in the materials, attributed to the low density and high porosity. A preliminary cellular evaluation in a fibroblast cell line (RMF-EG) evidenced the concentration range where swollen formulations did not affect cell proliferation (93-464 µM) at 24, 48, or 72 h. Considering that the reproducible sponge formulations were elaborated following inexpensive and non-contaminant methods and comprised bioactive components, we postulate them with potential for biomedical purposes. Additionally, this systematic study provides important information to design reproducible porous solid materials using ionic nanocomplexes.

SELECTION OF CITATIONS
SEARCH DETAIL