Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 57(14): 5841-5851, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36989064

ABSTRACT

The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.


Subject(s)
Nanoparticles , Water Purification , Wastewater , Distillation , Membranes, Artificial , Water , Water Purification/methods
2.
Theranostics ; 11(4): 2006-2019, 2021.
Article in English | MEDLINE | ID: mdl-33408795

ABSTRACT

Theranostics, the combination of diagnosis and therapy, has long held promise as a means to achieving personalised precision cancer treatments. However, despite its potential, theranostics has yet to realise significant clinical translation, largely due the complexity and overriding toxicity concerns of existing theranostic nanoparticle strategies. Methods: Here, we present an alternative nanoparticle-free theranostic approach based on simultaneous Raman spectroscopy and photodynamic therapy (PDT) in an integrated clinical platform for cancer theranostics. Results: We detail the compatibility of Raman spectroscopy and PDT for cancer theranostics, whereby Raman spectroscopic diagnosis can be performed on PDT photosensitiser-positive cells and tissues without inadvertent photosensitiser activation/photobleaching or impaired diagnostic capacity. We further demonstrate that our theranostic platform enables in vivo tumour diagnosis, treatment, and post-treatment molecular monitoring in real-time. Conclusion: This system thus achieves effective theranostic performance, providing a promising new avenue towards the clinical realisation of theranostics.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Monitoring/methods , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Spectrum Analysis, Raman/methods , Theranostic Nanomedicine , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
J Agric Food Chem ; 68(52): 15509-15515, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33331779

ABSTRACT

An innovative lateral flow competition immunoassay (LFCIA) for detecting clenbuterol (CL) was developed by employing the advantages of the coomassie brilliant blue (CBB) staining method. An antibody stained by CBB was used both as a recognition reagent and as a chromogenic probe, enabling the simple but sensitive LFCIA of CL. The CBB-based LFCIA exhibited sensitivity for CL with a detection limit of 2 ng mL-1. Furthermore, this strategy was preliminarily verified by screening for CL in milk, pork tenderloin, and swine liver with recoveries ranging from 81 to 102%. Compared with conventional LFCIAs, the use of CBB as a signal label not only avoided the complicated material synthesis and surface modification process but also simplified the cross-linking with antibodies, meanwhile reducing the steric hindrance and increasing the possibility of immune recognition reactions, which was propitious for the effective utilization of antibodies. Taking advantages of the simplicity, rapidity, and cost-effectiveness, the CBB-based LFCIA may have potential for on-demand monitoring of general harmful small molecules by changing the kind of the staining antibody.


Subject(s)
Adrenergic beta-2 Receptor Agonists/analysis , Chromatography, Affinity/methods , Clenbuterol/analysis , Food Analysis/methods , Animals , Cattle , Chromatography, Affinity/instrumentation , Food Analysis/instrumentation , Food Contamination/analysis , Liver/chemistry , Meat/analysis , Milk/chemistry , Rosaniline Dyes/chemistry , Sensitivity and Specificity , Swine
4.
Front Pharmacol ; 11: 1115, 2020.
Article in English | MEDLINE | ID: mdl-32848740

ABSTRACT

Despite major advances, cancer remains one of the largest burdens of disease worldwide. One reason behind this is that killing tumor cells without affecting healthy surrounding tissue remains a largely elusive prospect, despite the widespread availability of cytotoxic chemotherapeutic agents. To meet these modern healthcare requirements, it is essential to develop precision therapeutics that minimise off-target side-effects for various cancer types. To this end, highly specific molecular targeting agents against cancer are of great interest. These agents may work by targeting intracellular signalling pathways following receptor binding, or via internalization and targeting to specific subcellular compartments. DNA aptamers represent a promising molecular tool in this arena that can be used for both specific cell surface targeting and subsequent internalization and can also elicit a functional effect upon internalization. This review examines various cancer targeting cell-internalizing aptamers, with a particular focus towards functional aptamers that do not require additional conjugation to nanoparticles or small molecules to elicit a biological response. With a deeper understanding and precise exploitation of cancer specific molecular pathways, functional intracellular DNA aptamers may be a powerful step towards more widespread development of precision therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL