Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39115786

ABSTRACT

Natural alternatives to synthetic fungicides are gaining prominence as the focus sharpens on developing protective products. In this regard, the present study aimed to discern the antifungal potential of Artemisia absinthium L., a traditional medicinal plant native to Kashmir, by identifying its key phytoconstituents. Here, we present the notable antifungal activity of the leaf extract of A. absinthium against Fusarium oxysporum, Penicillium digitatum, and Alternaria solani, as observed through in vitro tests. Further refinement of the extract through chromatography isolated fraction 4 (F4), unveiling 27 compounds with no prior literature on their occurrence in A. absinthium. Additionally, in silico molecular docking analysis revealed three compounds which include Bruceine B (1), Guanidine, (phenylmethyl)- (2) and Ethyl alpha-d-glucoside (3) as potent inhibitors of multiple target key fungal enzymes such as endopolygalacturonase, chitin deacetylase and 1, 3, 8-trihydroxynaphthalene. The virtual screening unveiled compounds 1-3 within fraction 4, displaying robust binding energy ranging from -8 to -5.8 kcal/mol with multiple target enzymes. Notably, their efficacy surpassed that of the reference commercial fungicide, benodanil. This study underscores the burgeoning interest in harnessing natural alternatives for fungicidal applications, highlighting the potential of A. absinthium as a valuable resource in the quest for sustainable and effective bio-fungicides.

2.
Pediatr Dermatol ; 41(3): 403-409, 2024.
Article in English | MEDLINE | ID: mdl-38682561

ABSTRACT

N, N-diethyl-meta-toluamide (DEET) has been considered the 'gold standard' for insect repellent use since the 1950s and constitutes most insect repellents on the market. However, conflicting data in the scientific literature and confusing information in the media are at the core of debates about the safety of DEET insect repellents for the protection of children against arthropod bites. The few fatal occurrences involving DEET insect repellents and complications of their use in the pediatric population are typically the result of accidental overdoses or misuse of insect repellents that disregard warnings on product labels. With appropriate application, the safety record of DEET insect repellents continues to be excellent with few side effects. The purpose of this review is to provide a summary of the literature on safety outcomes of DEET insect repellent use in children; outline the pediatric recommendations relating to DEET insect repellents; and provide an overview of EPA-approved and naturally derived alternatives to DEET that possess low toxicity while providing a similar level of protection to synthetic insect repellents.


Subject(s)
DEET , Insect Repellents , Insect Repellents/adverse effects , Humans , DEET/adverse effects , Child , Insect Bites and Stings/prevention & control
3.
Front Microbiol ; 14: 1285543, 2023.
Article in English | MEDLINE | ID: mdl-38033592

ABSTRACT

Plant diseases caused by pathogenic microorganisms in agriculture present a considerable obstacle, resulting in approximately 30-40% crop damage. The use of conventional techniques to manage these microorganisms, i.e., applying chemical pesticides and antimicrobials, has been discovered to have adverse effects on human health and the environment. Furthermore, these methods have contributed to the emergence of resistance among phytopathogens. Consequently, it has become imperative to investigate natural alternatives to address this issue. The Streptomyces genus of gram-positive bacteria is a potentially viable natural alternative that has been extensively researched due to its capacity to generate diverse antimicrobial compounds, such as metabolites and organic compounds. Scientists globally use diverse approaches and methodologies to extract new bioactive compounds from these bacteria. The efficacy of bioactive compounds in mitigating various phytopathogens that pose a significant threat to crops and plants has been demonstrated. Hence, the Streptomyces genus exhibits potential as a biological control agent for combating plant pathogens. This review article aims to provide further insight into the Streptomyces genus as a source of antimicrobial compounds that can potentially be a biological control against plant pathogens. The investigation of various bioactive compounds synthesized by this genus can enhance our comprehension of their prospective utilization in agriculture.

4.
Plants (Basel) ; 12(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896050

ABSTRACT

The antifungal and antioxidant properties of essential oils (EOs) derived from four plants were assessed in vitro: Rosmarinus officinalis, Myrtus communis, Origanum compactum, and Eugenia aromatica. These plants are renowned for their diverse biological activities. Antioxidant activities were evaluated using DPPH, ABTS, and TAC tests. Antifungal activity was tested against four postharvest pathogens associated with chickpea in storage: Fusarium culmorum, Rhizopus oryzae, Penicillium italicum, and Aspergillus niger, using the broth microdilution technique. Additionally, the efficacy of several major compounds against fungi found in the EOs 1,8-cineole, carvacrol, and eugenol was evaluated. Furthermore, this study explored the potential synergy of combining eugenol and carvacrol in various ratios. Based on the results, E. aromatica EO exhibited the highest antioxidant activity, as evidenced by its lowest IC50 values for a DPPH of 0.006 mg/mL. This EO also demonstrated the best antifungal activity, with MIC values ranging from 0.098 to 0.13 µL/mL. The high concentration of eugenol in this oil was identified as a contributing factor to its potent antifungal effects. The individual application of eugenol displayed significant antifungal efficacy, which was further enhanced by incorporating carvacrol at a 1:3 ratio. This synergistic combination presents promising potential for the development of specific formulations aimed at optimizing grain protection during storage.

5.
Foods ; 11(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36359973

ABSTRACT

Nitrite is one of the most widely used curing ingredients in meat industries. Nitrites have numerous useful applications in cured meats and a vital component in giving cured meats their unique characteristics, such as their pink color and savory flavor. Nitrites are used to suppress the oxidation of lipid and protein in meat products and to limit the growth of pathogenic microorganisms such as Clostridium botulinum. Synthetic nitrite is frequently utilized for curing due to its low expenses and easier applications to meat. However, it is linked to the production of nitrosamines, which has raised several health concerns among consumers regarding its usage in meat products. Consumer desire for healthier meat products prepared with natural nitrite sources has increased due to a rising awareness regarding the application of synthetic nitrites. However, it is important to understand the various activities of nitrite in meat curing for developing novel substitutes of nitrites. This review emphasizes on the effects of nitrite usage in meat and highlights the role of nitrite in the production of carcinogenic nitrosamines as well as possible nitrite substitutes from natural resources explored also.

6.
Animals (Basel) ; 12(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327125

ABSTRACT

Two trials were performed to evaluate the efficacy of a blend of essential oils, bioflavonoids and tannins on methane (CH4) emissions (in vitro) and on the production efficiency of dairy cows (in vivo). The in vitro trial tested the production of total gas and CH4 at 16, 20 and 24 h of incubation, and volatile fatty acids (VFA) at 16 and 24 h, through biochemical methane potential (BMP) assays. In the in vivo trial, milk yield, dry matter intake (DMI), feed conversion rate (FCR), milk quality and apparent total tract digestibility (aTTD) were evaluated in 140 lactating Holstein Friesian cows. Animals were allocated into two groups: (i) Control, standard diet; (ii) Treatment, standard diet plus 10 g/head/d of a powder with a 10% concentration of a blend of essential oils, bioflavonoids and tannins. Statistical analysis was performed using the mixed procedure of SAS either for single or repeated measures. For all the parameters a p-value ≤ 0.05 was considered statistically significant. The blend significantly reduced the in vitro total gas and CH4 emissions at 16, 20 and 24 h of incubation (p < 0.001). In addition, acetic acid was reduced (p < 0.001), while propionic acid concentration was increased (p < 0.001) at 16 h and 24 h. In the in vivo trial, the Treatment group showed significantly raised milk yield, DMI, FCR (p < 0.001), and of the aTTD of cellulose and starch (p ≤ 0.002), while the milk quality traits were not affected. Overall, the results from the study indicated that the blend of essential oils, bioflavonoids, and tannins significantly reduced in vitro total gas and CH4 production and improved the production efficiency of lactating dairy cows in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL