Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124998, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39178690

ABSTRACT

Soil potassium is a crucial nutrient element necessary for crop growth, and its efficient measurement has become essential for developing rational fertilization plans and optimizing crop growth benefits. At present, data mining technology based on near-infrared (NIR) spectroscopy analysis has proven to be a powerful tool for real-time monitoring of soil potassium content. However, as technology and instruments improve, the curse of the dimensionality problem also increases accordingly. Therefore, it is urgent to develop efficient variable selection methods suitable for NIR spectroscopy analysis techniques. In this study, we proposed a three-step progressive hybrid variable selection strategy, which fully leveraged the respective strengths of several high-performance variable selection methods. By sequentially equipping synergy interval partial least squares (SiPLS), the random forest variable importance measurement (RF(VIM)), and the improved mean impact value algorithm (IMIV) into a fusion framework, a soil important potassium variable selection method was proposed, termed as SiPLS-RF(VIM)-IMIV. Finally, the optimized variables were fitted into a partial least squares (PLS) model. Experimental results demonstrated that the PLS model embedded with the hybrid strategy effectively improved the prediction performance while reducing the model complexity. The RMSET and RT on the test set were 0.01181% and 0.88246, respectively, better than the RMSET and RT of the full spectrum PLS, SiPLS, and SiPLS-RF(VIM) methods. This study demonstrated that the hybrid strategy established based on the combination of NIR spectroscopy data and the SiPLS-RF(VIM)-IMIV method could quantitatively analyze soil potassium content levels and potentially solve other issues of data-driven soil dynamic monitoring.

2.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894411

ABSTRACT

This study aimed to investigate near-infrared spectroscopy (NIRS) in combination with classification methods for the discrimination of fresh and once- or twice-freeze-thawed fish. An experiment was carried out with common carp (Cyprinus carpio). From each fish, test pieces were cut from the dorsal and ventral regions and measured from the skin side as fresh, after single freezing at minus 18 °C for 15 ÷ 28 days and 15 ÷ 21 days for the second freezing after the freeze-thawing cycle. NIRS measurements were performed via a NIRQuest 512 spectrometer at the region of 900-1700 nm in Reflection mode. The Pirouette 4.5 software was used for data processing. SIMCA and PLS-DA models were developed for classification, and their performance was estimated using the F1 score and total accuracy. The predictive power of each model was evaluated for fish samples in the fresh, single-freezing, and second-freezing classes. Additionally, aquagrams were calculated. Differences in the spectra between fresh and frozen samples were observed. They might be assigned mainly to the O-H and N-H bands. The aquagrams confirmed changes in water organization in the fish samples due to freezing-thawing. The total accuracy of the SIMCA models for the dorsal samples was 98.23% for the calibration set and 90.55% for the validation set. For the ventral samples, respective values were 99.28 and 79.70%. Similar accuracy was found for the PLS-PA models. The NIR spectroscopy and tested classification methods have a potential for nondestructively discriminating fresh from frozen-thawed fish in as methods to protect against fish meat food fraud.


Subject(s)
Carps , Freezing , Spectroscopy, Near-Infrared , Carps/physiology , Animals , Spectroscopy, Near-Infrared/methods
3.
Front Chem ; 12: 1398984, 2024.
Article in English | MEDLINE | ID: mdl-38894728

ABSTRACT

The component analysis of raw meal is critical to the quality of cement. In recent years, near-infrared (NIR) has been emerged as an innovative and efficient analytical method to determine the oxide content of cement raw meal. This study aims to utilize NIR spectroscopy combined with machine learning and chemometrics to improve the prediction of oxide content in cement raw meal. The Savitzky-Golay convolution smoothing method is applied to eliminate noise interference for the analysis of calcium carbonate ( C a C O 3 ), silicon dioxide ( S i O 2 ), aluminum oxide ( A l 2 O 3 ), and ferric oxide ( F e 2 O 3 ) in cement raw materials. Different wavelength selection techniques are used to perform a comprehensive analysis of the model, comparing the performance of several wavelength selection techniques. The back-propagation neural network regression model based on particle swarm optimization algorithm was also applied to optimize the extracted and screened feature wavelengths, and the model prediction performance was checked and evaluated using R p and RMSE. In conclusion, the results indicate that NIR spectroscopy in combination with ML and chemometrics has great potential to effectively improve the prediction performance of oxide content in raw materials and highlight the importance of modeling and wavelength selection techniques. By enabling more accurate and efficient determination of oxide content in raw materials, NIR spectroscopy coupled with meta-modeling has the potential to revolutionize quality assurance practices in cement manufacturing.

4.
Food Chem ; 456: 140062, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38876073

ABSTRACT

Differences in moisture and protein content impact both nutritional value and processing efficiency of corn kernels. Near-infrared (NIR) spectroscopy can be used to estimate kernel composition, but models trained on a few environments may underestimate error rates and bias. We assembled corn samples from diverse international environments and used NIR with chemometrics and partial least squares regression (PLSR) to determine moisture and protein. The potential of five feature selection methods to improve prediction accuracy was assessed by extracting sensitive wavelengths. Gradient boosting machines (GBMs), particularly CatBoost and LightGBM, were found to effectively select crucial wavelengths for moisture (1409, 1900, 1908, 1932, 1953, 2174 nm) and protein (887, 1212, 1705, 1891, 2097, 2456 nm). SHAP plots highlighted significant wavelength contributions to model prediction. These results illustrate GBMs' effectiveness in feature engineering for agricultural and food sector applications, including developing multi-country global calibration models for moisture and protein in corn kernels.


Subject(s)
Plant Proteins , Spectroscopy, Near-Infrared , Water , Zea mays , Zea mays/chemistry , Spectroscopy, Near-Infrared/methods , Plant Proteins/analysis , Plant Proteins/chemistry , Least-Squares Analysis , Water/chemistry , Water/analysis , Seeds/chemistry
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124287, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38701573

ABSTRACT

The application of Near Infrared (NIR) spectroscopy for analyzing wet feed directly on farms is increasingly recognized for its role in supporting harvest-time decisions and refining the precision of animal feeding practices. This study aims to evaluate the accuracy of NIR spectroscopy calibrations for both undried, unprocessed samples and dried, ground samples. Additionally, it investigates the influence of the bases of reference data (wet vs. dry basis) on the predictive capabilities of the NIR analysis. The study utilized 492 Corn Whole Plant (CWP) and 405 High Moisture Corn (HMC) samples, sourced from various farms across Italy. Spectral data were acquired from both undried, unground and dried, ground samples using laboratory bench NIR instruments, covering a spectral range of 1100 to 2498 nm. The reference chemical composition of these samples was analyzed and presented in two formats: on a wet matter basis and on a dry matter basis. The study revealed that calibrations based on undried samples generally exhibited lower predictive accuracy for most traits, with the exception of Dry Matter (DM). Notably, the decline in predictive performance was more pronounced in highly moist products like CWP, where the average error increased by 60-70%. Conversely, this reduction in accuracy was relatively contained (10-15%) in drier samples such as HMC. The Standard Error of Cross-Validation (SECV) values for DMres, Ash, CP, and EE were notably low, at 0.39, 0.30, 0.29, 0.21% for CWP and 0.49, 0.14, 0.25, 0.14% for HMC, respectively. These results align with previous studies, indicating the reliability of NIR spectroscopy in diverse moisture contexts. The study attributes this variance to the interference caused by water in 'as is' samples, where the spectral features predominantly reflect water content, thereby obscuring the spectral signatures of other nutrients. In terms of calibration development strategies, the study concludes that there is no significant difference in predictive performance between undried calibrations based on either 'dry matter' or 'as is' basis. This finding emphasizes the potential of NIR spectroscopy in diverse moisture contexts, although with varying degrees of accuracy contingent upon the moisture content of the analyzed samples. Overall, this research provides valuable insights into the calibration strategies of NIR spectroscopy and its practical applications in agricultural settings, particularly for on-farm forage analysis.


Subject(s)
Animal Feed , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Calibration , Zea mays/chemistry , Animal Feed/analysis , Water/analysis , Water/chemistry , Desiccation
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124343, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38676985

ABSTRACT

Full-length spectral data analysis has a big problem that the variables are highly in collinearity and correlation. Spectral wavelength selection is a continuing hot topic in quantitative or qualitative analysis. In this paper, we propose a new approach for near-infrared (NIR) wavelength selection. The novel strategy mainly refers to the modification of maximum information coefficient (MIC) method and an improvement of firefly evolutionary algorithm. We introduce the orthogonal decomposition to modify the MIC method, so as to search the informative signals conceived in projection vectors. We also raise the common firefly algorithm (FA) as in the discretized mode, and design a novel adaptive mapping function to improve its intelligent computing effect. In experiment, the modified MIC (MICm) method and the adaptive discrete FA algorithm (DFAadp) are joint together for combined optimization of the NIR calibration model. The proposed combined modeling strategy is applied for quantitative analysis of the fishmeal samples, in the concern to select their informative variables/wavelengths. Experimental results indicate that the combination of MICm and DFAadp perform better than traditional MIC method and common DFA. We conclude that the proposed combined optimization strategy is beneficial for wavelength selection in NIR spectral analysis. It is anticipated to be validated for further applications in a wide range.


Subject(s)
Algorithms , Fireflies , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Animals , Calibration
7.
Foods ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672859

ABSTRACT

Near-infrared spectroscopy has become a common quality assessment tool for fishmeal products during the last two decades. However, to date it has not been used for active online quality monitoring during fishmeal processing. Our aim was to investigate whether NIR spectroscopy, in combination with multivariate chemometrics, could actively predict the changes in the main chemical quality parameters of pelagic fishmeal and oil during processing, with an emphasis on lipid quality changes. Results indicated that partial least square regression (PLSR) models from the NIR data effectively predicted proximate composition changes during processing (with coefficients of determination of an independent test set at RCV2 = 0.9938, RMSECV = 2.41 for water; RCV2 = 0.9773, RMSECV = 3.94 for lipids; and RCV2 = 0.9356, RMSECV = 5.58 for FFDM) and were successful in distinguishing between fatty acids according to their level of saturation (SFA (RCV2=0.9928, RMSECV=0.24), MUFA (RCV2=0.8291, RMSECV=1.49), PUFA (RCV2=0.8588, RMSECV=2.11)). This technique also allowed the prediction of phospholipids (PL RCV2=0.8617, RMSECV=0.11, and DHA (RCV2=0.8785, RMSECV=0.89) and EPA content RCV2=0.8689, RMSECV=0.62) throughout processing. NIR spectroscopy in combination with chemometrics is, thus, a powerful quality assessment tool that can be applied for active online quality monitoring and processing control during fishmeal and oil processing.

8.
Sensors (Basel) ; 24(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203170

ABSTRACT

Respiratory viruses' detection is vitally important in coping with pandemics such as COVID-19. Conventional methods typically require laboratory-based, high-cost equipment. An emerging alternative method is Near-Infrared (NIR) spectroscopy, especially a portable one of the type that has the benefits of low cost, portability, rapidity, ease of use, and mass deployability in both clinical and field settings. One obstacle to its effective application lies in its common limitations, which include relatively low specificity and general quality. Characteristically, the spectra curves show an interweaving feature for the virus-present and virus-absent samples. This then provokes the idea of using machine learning methods to overcome the difficulty. While a subsequent obstacle coincides with the fact that a direct deployment of the machine learning approaches leads to inadequate accuracy of the modelling results. This paper presents a data-driven study on the detection of two common respiratory viruses, the respiratory syncytial virus (RSV) and the Sendai virus (SEV), using a portable NIR spectrometer supported by a machine learning solution enhanced by an algorithm of variable selection via the Variable Importance in Projection (VIP) scores and its Quantile value, along with variable truncation processing, to overcome the obstacles to a certain extent. We conducted extensive experiments with the aid of the specifically developed algorithm of variable selection, using a total of four datasets, achieving classification accuracy of: (1) 0.88, 0.94, and 0.93 for RSV, SEV, and RSV + SEV, respectively, averaged over multiple runs, for the neural network modelling of taking in turn 3 sessions of data for training and the remaining one session of an 'unknown' dataset for testing. (2) the average accuracy of 0.94 (RSV), 0.97 (SEV), and 0.97 (RSV + SEV) for model validation and 0.90 (RSV), 0.93 (SEV), and 0.91 (RSV + SEV) for model testing, using two of the datasets for model training, one for model validation and the other for model testing. These results demonstrate the feasibility of using portable NIR spectroscopy coupled with machine learning to detect respiratory viruses with good accuracy, and the approach could be a viable solution for population screening.


Subject(s)
COVID-19 , Viruses , Humans , Algorithms , COVID-19/diagnosis , Coping Skills , Machine Learning
9.
Curr Res Food Sci ; 8: 100675, 2024.
Article in English | MEDLINE | ID: mdl-38292344

ABSTRACT

Iberian ham is a highly appreciated product and according to Spanish legislation different labels identify different products depending on the genetic purity. Consequently, "100% Iberian" ham from purebred Iberian animals is more expensive than "Iberian" ham from Iberian x Duroc crosses. The hypothesis of this study was that to avoid labelling fraud it is possible to distinguish the breed (Iberian or Iberian x Duroc) of acorn-fed pigs of Iberian ham without any prior preparation of the sample by using spectroscopy that is a rapid and reliable technology. Moreover, portable devices which can be used in situ could provide similar results to those of benchtop equipment. Therefore, the spectra of the 60 samples (24 samples of 100% Iberian ham and 36 samples of Iberian x Duroc crossbreed ham) were recorded only for the fat, only for the muscle, or for the whole slice with two benchtop near-infrared (NIR) spectrometers (Büchi NIRFlex N-500 and Foss NIRSystem 5000) and five portable spectrometers including four portable NIR devices (VIAVI MicroNIR 1700 ES, TellSpec Enterprise Sensor, Thermo Fischer Scientific microPHAZIR, and Consumer Physics SCiO Sensor), and one RAMAN device (BRAVO handheld). The results showed that, in general, the whole slice recording produced the best results for classification purposes. The SCiO device showed the highest percentages of correctly classified samples (97% in calibration and 92% in validation) followed by TellSpec (100% and 81%). The SCiO sensor also showed the highest percentages of success when the analyses were performed only on lean meat (97% in calibration and 83% in validation) followed by microPHAZIR (84% and 81%), while in the case of the fat tissue. Raman technology showed the best discrimination capacity (96% and 78%) followed by microPHAZIR (89% and 81%). Therefore, spectroscopy has proved to be a suitable technology for discriminating ham samples according to breed purity; portable devices have been shown to give even better results than benchtop spectrometers.

10.
Polymers (Basel) ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896391

ABSTRACT

The quality control of thermally modified wood and identifying heat treatment intensity using nondestructive testing methods are critical tasks. This study used near-infrared (NIR) spectroscopy and machine learning modeling to classify thermally modified wood. NIR spectra were collected from the surfaces of untreated and thermally treated (at 170 °C, 212 °C, and 230 °C) western hemlock samples. An explainable machine learning approach was practiced using a TreeNet gradient boosting machine. No dimensionality reduction was performed to better explain the feature ranking results obtained from the model and provide insight into the critical wavelengths contributing to the performance of classification models. NIR spectra in the ranges of 1100-2500 nm, 1400-2500 nm, and 1700-2500 nm were fed into the TreeNet model, which resulted in classification accuracy values (test data) of 94.35%, 89.29%, and 84.52%, respectively. Feature ranking analysis revealed that when using the range of 1100-2500 nm, the changes in wood color resulted in the highest variation in NIR reflectance amongst treatments. As a result, associated features were given higher importance by TreeNet. Limiting the wavelength range increased the significance of features related to water or wood chemistry; however, these predictive models were not as accurate as the one benefiting from the impact of wood color change on the NIR spectra. The developed framework could be applied to different applications in which NIR spectra are used for wood characterization and quality control to provide improved insights into selected NIR wavelengths when developing a machine learning model.

11.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-37259451

ABSTRACT

Counterfeit or substandard drugs are pharmaceutical formulations in which the active pharmaceutical ingredients (APIs) have been replaced or ingredients do not comply with the drug leaflet. With the outbreak of the COVID-19 pandemic, fraud associated with the preparation of substandard or counterfeit drugs is expected to grow, undermining health systems already weakened by the state of emergency. Analytical chemistry plays a key role in tackling this problem, and in implementing strategies that permit the recognition of uncompliant drugs. In light of this, the present work represents a feasibility study for the development of a NIR-based tool for the quantification of dexamethasone in mixtures of excipients (starch and lactose). Two different regression strategies were tested. The first, based on the coupling of NIR spectra and Partial Least Squares (PLS) provided good results (root mean square error in prediction (RMSEP) of 720 mg/kg), but the most accurate was the second, a strategy exploiting sequential preprocessing through orthogonalization (SPORT), which led (on the external set of mixtures) to an R2pred of 0.9044, and an RMSEP of 450 mg/kg. Eventually, Variable Importance in Projection (VIP) was applied to interpret the obtained results and determine which spectral regions contribute most to the SPORT model.

12.
J Photochem Photobiol B ; 244: 112730, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37229972

ABSTRACT

Cell death plays an important role in the development of multicellular organisms and the maintenance of adult homeostasis. However, traditional methods of cell death detection can damage cells and tissues. Here, we report the use of near-infrared (NIR) spectroscopy for non-invasively distinguishing between cell death types. We found a difference between normal, apoptotic, and necroptotic mouse dermal fibroblast cells in the wavelength range of 1100-1700 nm. In particular, the differences in scattering of NIR light between cells at different states are enough to be distinguished. This feature was exploited by measuring the attenuation coefficient (δµ), which specifies the ease at which light can pass through a substance. The results showed that δµ can be used to distinguish between different types of cell death. Therefore, this study proposes a new, non-invasive, and fast method to differentiate cell death types without the additional fluorescent labeling.


Subject(s)
Spectroscopy, Near-Infrared , Animals , Mice , Cell Death , Cell Line, Tumor , Cell Differentiation
13.
Foods ; 12(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107424

ABSTRACT

The increase in market demand and economic value of Canadian pork primal cuts has led to a need to assess advanced technologies capable of measuring quality traits. Fat and lean composition were measured using a Tellspec near-infrared (NIR) spectroscopy device to predict the pork belly fat iodine value (IV) and loin lean intramuscular fat (IMF) content in 158 pork belly primals and 419 loin chops. The calibration model revealed a 90.6% and 88.9% accuracy for the Tellspec NIR to predict saturated fatty acids (SFA) and IV, respectively, in the belly fat. The calibration model accuracy for the other belly fatty acids revealed an accuracy of 66.3-86.1%. Using the Tellspec NIR to predict loin lean IMF reported a lower accuracy for moisture (R2 = 60) and fat % (R2 = 40.4). This suggests that Tellspec NIR spectroscopy measures on the pork belly primal offers a cost-efficient, rapid, accurate, and non-invasive indicator of pork belly IV and could be used for the classification for specific markets.

14.
Antioxidants (Basel) ; 12(2)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36830025

ABSTRACT

In the present study, tap water, alkaline electrolyzed water (AlEW) and tourmaline water (TMW) were used as the electrolytes to generated the silver-ionized water (SIW), AlEW-SIW and TMW-SIW, respectively. The antioxidant properties of the samples containing ascorbic acid (AsA) were investigated by WST-kit method. The results showed that the SOD activity of AsA (2 mmol/L) dissolved in SIW (66.0%) was enhanced by about 8% compared to that of the tap water (57.9%). The SOD activity of the AlEW-SIW solution (77.3%), which was higher than that of the SIW solution, and lower than that of the AlEW solution (83.6%). The SOD activity of the TMW-SIW solution (83.0%) was similar to that of the TMW solution (82.5%). Furthermore, to classify the sample solutions, discriminant analyses were performed based on near infrared (NIR) spectral data, which was consistent with the results of the WST-kit method. The SOD activity of the AlEW-SIW and TMW-SIW solutions decreased slowly with storage time, and their SOD activities were higher than that of AlEW, TMW and the tap water solutions at storage time of 14 days. In summary, AlEW-SIW and TMW-SIW showed similar antioxidant activity enhancement as AlEW and TMW, and they also maintained the stability of the antioxidant activity of AsA during storage.

15.
Molecules ; 27(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234957

ABSTRACT

In the present work, a fast, relatively cheap, and green analytical strategy to identify and quantify the fraudulent (or voluntary) addition of a drug (alprazolam, the API of Xanax®) to an alcoholic drink of large consumption, namely gin and tonic, was developed using coupling near-infrared spectroscopy (NIR) and chemometrics. The approach used was both qualitative and quantitative as models were built that would allow for highlighting the presence of alprazolam with high accuracy, and to quantify its concentration with, in many cases, an acceptable error. Classification models built using partial least squares discriminant analysis (PLS-DA) allowed for identifying whether a drink was spiked or not with the drug, with a prediction accuracy in the validation phase often higher than 90%. On the other hand, calibration models established through the use of partial least squares (PLS) regression allowed for quantifying the drug added with errors of the order of 2-5 mg/L.


Subject(s)
Alprazolam , Spectroscopy, Near-Infrared , Chemometrics , Discriminant Analysis , Least-Squares Analysis , Spectroscopy, Near-Infrared/methods
16.
Foods ; 11(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35885343

ABSTRACT

The identification of pork meat quality is a significant issue in food safety. In this paper, a novel strategy was proposed for identifying pork meat samples at different storage times via Fourier transform near-infrared (FT-NIR) spectroscopy and fuzzy clustering algorithms. Firstly, the FT-NIR spectra of pork meat samples were collected by an Antaris II spectrometer. Secondly, after spectra preprocessing with multiplicative scatter correction (MSC), the orthogonal linear discriminant analysis (OLDA) method was applied to reduce the dimensionality of the FT-NIR spectra to obtain the discriminant information. Finally, fuzzy C-means (FCM) clustering, K-harmonic means (KHM) clustering, and Gustafson-Kessel (GK) clustering were performed to establish the recognition model and classify the feature information. The highest clustering accuracies of FCM and KHM were both 93.18%, and GK achieved a clustering accuracy of 65.90%. KHM performed the best in the FT-NIR data of pork meat considering the clustering accuracy and computation. The overall experiment results demonstrated that the combination of FT-NIR spectroscopy and fuzzy clustering algorithms is an effective method for distinguishing pork meat storage times and has great application potential in quality evaluation of other kinds of meat.

17.
Front Pediatr ; 10: 894125, 2022.
Article in English | MEDLINE | ID: mdl-35832576

ABSTRACT

Background: The association of near-infrared spectroscopy (NIRS) with various outcomes after pediatric cardiac surgery has been studied extensively. However, the role of NIRS in the prediction of cardiac arrest (CA) in children with heart disease has yet to be evaluated. We sought to determine if a model utilizing regional cerebral oximetry (rSO2c) and somatic oximetry (rSO2s) could predict CA in children admitted to a single-center pediatric cardiac intensive care unit (CICU). Methods: We retrospectively reviewed 160 index CA events for patients admitted to our pediatric CICU between November 2010 and January 2019. We selected 711 control patients who did not have a cardiac arrest. Hourly data was collected from the electronic health record (EHR). We previously created a machine-learning algorithm to predict the risk of CA using EHR data. Univariable analysis was done on these variables, which we then used to create a multivariable logistic regression model. The outputs from the model were presented by odds ratio (OR) and 95% confidence interval (CI). Results: We created a multivariable model to evaluate the association of CA using five variables: arterial saturation (SpO2)- rSO2c difference, SpO2-rSO2s difference, heart rate, diastolic blood pressure, and vasoactive inotrope score. While the SpO2-rSO2c difference was not a significant contributor to the multivariable model, the SpO2-rSO2s difference was. The average SpO2-rSO2s difference cutoff with the best prognostic accuracy for CA was 29% [CI 26-31%]. In the multivariable model, a 10% increase in the SpO2-rSO2s difference was independently associated with increased odds of CA [OR 1.40 (1.18, 1.67), P < 0.001] at 1 h before CA. Our model predicted CA with an AUROC of 0.83 at 1 h before CA. Conclusion: In this single-center case-control study of children admitted to a pediatric CICU, we created a multivariable model utilizing hourly data from the EHR to predict CA. At 1 h before the event, for every 10% increase in the SpO2-rSO2s difference, the odds of cardiac arrest increased by 40%. These findings are important as the field explores ways to capitalize on the wealth of data at our disposal to improve patient care.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121492, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35691164

ABSTRACT

An optical coherence tomography (OCT) system combined with near-infrared spectroscopy (NIRS) was developed to carry out simultaneously the cross-sectional observation and spectral measurement of a specific area inside a polymer sample. This OCT-NIRS system consists of a fiber-optic-based spectrometer combined with an OCT system and enables non-invasive imaging up to a depth of several millimeters and the recording of the NIR spectrum in the observed area. A subsequent analysis of the collected data will provide key information revealing the way in which the microscopic structure of the polymer is affected by the chemical composition around it. A structural defect inside a molded polyamide (PA) 66 sample was examined with the OCT-NIRS system to demonstrate how this technique can be utilized to characterize chemical composition as well as the morphological features inside the sample. A specific void was detected by OCT when the PA sample was molded without any drying treatment. The NIR spectrum collected around the void area of the undried PA was then compared with that of vacuum-dried PA by two-trace two-dimensional (2T2D) correlation analysis to identify a subtle but pertinent difference in the spectral features. The appearance of several correlation peaks in the 2T2D asynchronous correlation spectrum revealed that the OH group represented by the NIR band at 1446 nm is found in relative abundance around the void, which clearly reveals that the development of the void in the molded PA results from inadequate sample pretreatment.


Subject(s)
Nylons , Tomography, Optical Coherence , Cross-Sectional Studies , Spectroscopy, Near-Infrared/methods , Tomography, Optical Coherence/methods
19.
Talanta ; 245: 123472, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35462136

ABSTRACT

From a criminalistic point of view, the accurate dating of biological traces found at the crime scene, together with its compatibility with the estimated crime perpetration timeframe, enables to limit the number of suspects by assessing their alibis and clarifying the sequence of events. The present study delineates, for the first time, the possibility of dating biological fluids such as semen and urine, as well as blood traces, by using a novel non-destructive analytical strategy based on hyperspectral imaging in the near infared region (HSI-NIR), coupled with multivariate regression methods. Investigated aspects of the present study include not only the progressive degradation of the biological trace itself, but also the effects of its interactions with the support on which it is absorbed, in particular the hydrophilic vs. hydrophobic character of fabric tissues. Results are critically discussed, highlighting potential and limitations of the proposed approach for a practical implementation.


Subject(s)
Body Fluids , Hyperspectral Imaging , Least-Squares Analysis , Regression Analysis , Semen , Spectroscopy, Near-Infrared
20.
Plant Methods ; 18(1): 44, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366929

ABSTRACT

BACKGROUND: Sweet tea, which functions as tea, sugar and medicine, was listed as a new food resource in 2017. Flavonoids are the main medicinal components in sweet tea and have significant pharmacological activities. Therefore, the quality of sweet tea is related to the content of flavonoids. Flavonoid content in plants is normally determined by time-consuming and expensive chemical analyses. The aim of this study was to develop a methodology to measure three constituents of flavonoids, namely, total flavonoids, phloridin and trilobatin, in sweet tea leaves using near-infrared spectroscopy (NIR). RESULTS: In this study, we demonstrated that the combination of principal component analysis (PCA) and NIR spectroscopy can distinguish sweet tea from different locations. In addition, different spectral preprocessing methods are used to establish partial least squares (PLS) models between spectral information and the content of the three constituents. The best total flavonoid prediction model was obtained with NIR spectra preprocessed with Savitzky-Golay combined with second derivatives (SG + D2) (RP2 = 0.893, and RMSEP = 0.131). For trilobatin, the model with the best performance was developed with raw NIR spectra (RP2 = 0.902, and RMSEP = 2.993), and for phloridin, the best model was obtained with NIR spectra preprocessed with standard normal variate (SNV) (RP2 = 0.818, and RMSEP = 1.085). The coefficients of determination for all calibration sets, validation sets and prediction sets of the best PLS models were higher than 0.967, 0.858 and 0.818, respectively. CONCLUSIONS: The conclusion indicated that NIR spectroscopy has the ability to determine the flavonoid content of sweet tea quickly and conveniently.

SELECTION OF CITATIONS
SEARCH DETAIL