ABSTRACT
Sublethal exposure to imidacloprid and other neonicotinoid insecticides may affect the neurological functions of birds. As such, behavior may be compromised. Here, we tested experimentally the effects of 1 and 6 mg/kg bw of imidacloprid on the antipredator behavioral responses of the red-legged partridge (Alectoris rufa) to simulated predator threats. Sixty-six partridges were challenged in groups or individually to intra- and interspecific alarm calls, to a raptor silhouette (aerial predation risk), and to a fox model (terrestrial predation risk). Antipredator behaviors were recorded as active (escape, active vigilance) and passive (passive vigilance, crouching, and freezing) responses. Latency in response to the stimuli, percentage of individuals who responded, response duration, speed of active responses, and vocalizations were measured. In experiments with partridges in the group, crouching against simulated predation risk lasted less time in birds treated with 6 mg a.i./kg bw than in control birds. In the experiments with individual partridges, passive vigilance against the intraspecific alarm lasted longer in birds treated with 6 mg a.i./kg bw than in control birds. The observed hyperreactivity to the predatory threat after a sublethal imidacloprid exposure can have consequences on survival under field conditions, where predation is a main driver of population dynamics.
ABSTRACT
Dinotefuran is a compound belonging to the third generation of nicotinoid insecticides, and has been effective in combating pests that are resistant to conventional insecticides, such as organophosphates, carbamates, and pyrethroids. This molecule presents high-water solubility (39,830 mg L-1 at 25 °C) compared to other pesticides, which facilitates its drag and leaching to lower soil layers. Therefore, the present study aimed to optimize and validate liquid-liquid extraction with low temperature purification (LLE-LTP) to determine dinotefuran residues in water by high performance liquid chromatography with diode array detection (HPLC-DAD). The results revealed that the analyte recovery ranged from 85.44 to 89.72% with a relative standard deviation <5.8. LLE-LTP was selective, precise, accurate, and linear in the range from 10.0 to 210 µg L-1, and presented limits of detection and quantification of 5.00 and 10.00 µg L-1, respectively. The matrix effect was <14%. The stability study of dinotefuran in water revealed significant stability of this molecule in water in the absence of light (>130 days), and a half-life of 7 days in water with sunlight. LLE-LTP coupled to HPLC-DAD was a simple, easy, and efficient method for extracting and analyzing dinotefuran in water samples.