Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.238
Filter
1.
ACS Chem Neurosci ; 15(14): 2532-2544, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970802

ABSTRACT

It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.


Subject(s)
Microglia , Neuroinflammatory Diseases , Proteasome Endopeptidase Complex , Microglia/metabolism , Microglia/drug effects , Humans , Proteasome Endopeptidase Complex/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Inflammation/metabolism , Inflammation/immunology
2.
ACS Chem Neurosci ; 15(14): 2586-2599, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38979921

ABSTRACT

Aß oligomers are being investigated as cytotoxic agents in Alzheimer's disease (AD). Because of their transient nature and conformational heterogeneity, the relationship between the structure and activity of these oligomers is still poorly understood. Hence, methods for stabilizing Aß oligomeric species relevant to AD are needed to uncover the structural determinants of their cytotoxicity. Here, we build on the observation that metal ions and metabolites have been shown to interact with Aß, influencing its aggregation and stabilizing its oligomeric species. We thus developed a method that uses zinc ions, Zn(II), to stabilize oligomers produced by the 42-residue form of Aß (Aß42), which is dysregulated in AD. These Aß42-Zn(II) oligomers are small in size, spanning the 10-30 nm range, stable at physiological temperature, and with a broad toxic profile in human neuroblastoma cells. These oligomers offer a tool to study the mechanisms of toxicity of Aß oligomers in cellular and animal AD models.


Subject(s)
Amyloid beta-Peptides , Peptide Fragments , Zinc , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Humans , Zinc/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Cell Line, Tumor , Alzheimer Disease/metabolism , Cell Survival/drug effects
3.
Cell Rep Methods ; 4(7): 100816, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38981474

ABSTRACT

We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.


Subject(s)
Mice, Inbred C57BL , Purkinje Cells , Animals , Purkinje Cells/metabolism , Mice , Cell Nucleus/metabolism , Cerebellum/metabolism , Cerebellum/cytology , Antibodies , GTP-Binding Proteins , Serine-Type D-Ala-D-Ala Carboxypeptidase
4.
J Clin Invest ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012703

ABSTRACT

Neovascular age-related macular degeneration (nAMD) remains a major cause of visual impairment and puts considerable burden on patients and health care systems. L-DOPA-treated Parkinson Disease (PD) patients have been shown to be partially protected from nAMD, but the mechanism remains unknown. Using murine models, combining 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and laser-induced nAMD, standard PD treatment of L-DOPA/DOPA-decarboxylase inhibitor, or specific dopamine receptor inhibitors, we here demonstrate that L-DOPA treatment-induced increase of dopamine mediated dopamine receptor D2 (DRD2) signaling inhibits choroidal neovascularization independently of MPTP-associated nigrostriatal pathway lesion. Analyzing a retrospective cohort of more than two hundred thousand nAMD patients receiving anti-VEGF treatment from the French nationwide insurance database, we show that DRD2-agonist treated (PD) patients have a significantly delayed age of onset for nAMD (81.4 (±7.0) vs 79.4 (±8.1) years old, respectively, p<0.0001) and reduced need for anti-VEGF therapies (-0.6 injections per 100 mg/day daily dose of DRD2 agonists the second year of treatment), similar to the L-DOPA treatment. While providing a mechanistic explanation for an intriguing epidemiological observation, our findings suggest that systemic DRD2 agonists might constitute an adjuvant therapy to delay and reduce the need for anti-VEGF therapy in nAMD patients.

5.
Clin Neurophysiol ; 165: 117-124, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39013355

ABSTRACT

OBJECTIVE: Video-based eye tracking was used to investigate saccade, pupil, and blink abnormalities among patients with Huntington's disease (HD) who watched sequences of short videos. HD, an autosomal dominant neurodegenerative disorder resulting from a CAG mutation on chromosome 4, produces motor and cognitive impairments including slow or irregular eye movements, which have been studied using structured tasks. METHODS: To explore how HD affects eye movements under instruction free conditions, we assessed 22 HD patients and their age matched controls in a 10-minute video-based free viewing task. RESULTS: Patients with HD experienced a significant reduction in saccade exploration rate following video clip transitions, an increase in pupil reactions to luminance changes after clip transitions, and a significant higher blink rate throughout the task compared to the control group. CONCLUSIONS: These results show that HD has a significant impact on how patients visually explore and respond to their environment under unconstrained and ecologically natural conditions. SIGNIFICANCE: Eye tracking in HD patients revealed saccadic, pupil, and blink abnormalities in early HD patients, suggestive of brain circuitry abnormalities that probably involve brain stem deficits. Further research should explore the impact of these changes on the quality of life of the patients affected by the disease.

6.
Eur J Med Chem ; 276: 116592, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-39013357

ABSTRACT

A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.

7.
Article in English | MEDLINE | ID: mdl-39017752

ABSTRACT

There has been much interest in the use of cell culture models of neurones, to avoid the animal welfare and cost issues of using primary and human-induced pluripotent stem cell (hiPSC)-derived neurones respectively. The human neuroblastoma cell line, SH-SY5Y, is extensively used in laboratories as they can be readily expanded, are of low cost and can be differentiated into neuronal-like cells. However, much debate remains as to their phenotype once differentiated, and their ability to recapitulate the physiology of bona fide neurones. Here, we characterise a differentiation protocol using retinoic acid and BDNF, which results in extensive neurite outgrowth/branching within 10 days, and expression of key neuronal and synaptic markers. We propose that these differentiated SH-SY5Y cells may be a useful substitute for primary or hiPSC-derived neurones for cell biology studies, in order to reduce costs and animal usage. We further propose that this characterised differentiation timecourse could be used as an in vitro model for neuronal differentiation, for proof-of principle studies on neurogenesis, e.g. relating to neurodegenerative diseases. Finally, we demonstrate profound changes in Tau phosphorylation during differentiation of these cells, suggesting that they should not be used for neurodegeneration studies in their undifferentiated state.

8.
Neurotoxicology ; 103: 320-334, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960072

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.

9.
Alzheimers Dement ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970402

ABSTRACT

INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aß]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.

10.
Arch Gerontol Geriatr ; 126: 105541, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38981326

ABSTRACT

PURPOSE: This systematic review with meta-analysis aims to analyze the effects of different types of exercise on cognition, neuroprotective and neuroinflammatory blood markers in older adults with mild cognitive impairment (MCI). METHODS: Relevant studies were identified using PubMED, SPORTDiscuss, Web of Science, Scopus, and PsycInfo databases. Methodological quality assessment of the studies was done with modified Downs and Black checklist. Data obtained from the included studies was analyzed using Comprehensive Meta-Analysis 4.0 software and results were reported using the random effects method. RESULTS: A total of twenty-three studies were identified. The findings were summarized as change in cognitive function after the exercise interventions in general and after each type of exercise. On average, the exercise intervention revealed an effect size (ES): 1.165; 0.741 to 1.589 (95% Confidence Interval (CI); p < 0.001); aerobic exercise ES: 1.442; 0.624 to 2.260 (95 %CI); p = 0.001; Multimodal ES: 0,856; 0.366 to 1.346 (95 % CI); p = 0.001 and resistance exercise ES: 1.229; 0.339 to 2.120 (95 % CI); p = 0.007. In addition, we observed significant small ES: -0.475; -0.817 to -0.134 (95 %CI); p = 0.006, I2= 0 %; τ2 = 0 of exercise effects on Tumor Necrosis Factor-α (TNF-α) and non-significant large ES:0.952; -0.238 to 2.142 (95 %CI); p = 0.117 on Brain Derived Neurotrophic Factor (BDNF) in persons with MCI. CONCLUSION: The present study revealed the existence of a large positive effect of overall exercise intervention on cognitive function and a small effect on TNF-α in old people with MCI. Additionally, this study demonstrates that aerobic and resistance exercises had similar larger positive effects and were better than multimodal exercise on increasing cognition in older persons with MCI.

11.
Alzheimers Dement ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982798

ABSTRACT

INTRODUCTION: Evidence has emerged that cardiometabolic multimorbidity (CMM) is associated with dementia, but the underlying mechanisms are poorly understood. METHODS: This population-based study included 5704 older adults. Of these, data were available in 1439 persons for plasma amyloid-ß (Aß), total tau, and neurofilament light chain (NfL) and in 1809 persons for serum cytokines. We defined CMM following two common definitions used in previous studies. Data were analyzed using general linear, logistic, and mediation models. RESULTS: The presence of CMM was significantly associated with an increased likelihood of dementia, Alzheimer's disease (AD), and vascular dementia (VaD) (p < 0.05). CMM was significantly associated with increased plasma Aß40, Aß42, and NfL, whereas CMM that included visceral obesity was associated with increased serum cytokines. The mediation analysis suggested that plasma NfL significantly mediated the association of CMM with AD. DISCUSSION: CMM is associated with dementia, AD, and VaD in older adults. The neurodegenerative pathway is involved in the association of CMM with AD. HIGHLIGHTS: The presence of CMM was associated with increased likelihoods of dementia, AD, and VaD in older adults. CMM was associated with increased AD-related plasma biomarkers and serum inflammatory cytokines. Neurodegenerative pathway was partly involved in the association of CMM with AD.

12.
Article in English | MEDLINE | ID: mdl-38984574

ABSTRACT

Neurodegenerative disorders represent a set of advancing, severe, and incapacitating conditions impacting millions globally, with a rising prevalence. Despite concerted efforts and an enhanced understanding of the intricate pathophysiology of neurodegeneration, the quest for effective treatments remains unfulfilled. Consequently, there exists a pressing clinical necessity for the exploration of innovative therapeutic approaches. Alpha-mangostin has exhibited beneficial effects in alleviating the severity of neurodegenerative disorders, primarily attributed to its antioxidant properties. Alpha-mangostin showcases diverse pharmacological effects, encompassing anti-inflammatory, anti-tumour, and antioxidant effects. Consequently, it has surfaced as a promising remedy with both prophylactic and restorative impacts on various neurodegenerative ailments. Recent research has illuminated the therapeutic targets of alpha-mangostin, suggesting its potential utility in addressing neurodegeneration. This review showcases the neuroprotective effects of alpha-mangostin. Drawing from numerous preliminary studies and taking into account the compound's remedial effects, the primary focus is on its role as a health-giving compound for the therapy of diseases associated with the degeneration of the nervous system. Given the substantial evidence supporting its efficacy in various experimental models, this review advocates for further investigations, with a special highlight on elucidating neuroprotective mechanisms and conducting clinical trials to validate its effectiveness in managing Alzheimer's disease as well as Parkinson's disease.

13.
Cells ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38994964

ABSTRACT

Aggregation of the microtubule-associated protein tau (MAPT) is the hallmark pathology in a spectrum of neurodegenerative disorders collectively called tauopathies. Physiologically, tau is an inherent neuronal protein that plays an important role in the assembly of microtubules and axonal transport. However, disease-associated mutations of this protein reduce its binding to the microtubule components and promote self-aggregation, leading to formation of tangles in neurons. Tau is also expressed in oligodendrocytes, where it has significant developmental roles in oligodendrocyte maturation and myelin synthesis. Oligodendrocyte-specific tau pathology, in the form of fibrils and coiled coils, is evident in major tauopathies including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Multiple animal models of tauopathy expressing mutant forms of MAPT recapitulate oligodendroglial tau inclusions with potential to cause degeneration/malfunction of oligodendrocytes and affecting the neuronal myelin sheath. Till now, mechanistic studies heavily concentrated on elucidating neuronal tau pathology. Therefore, more investigations are warranted to comprehensively address tau-induced pathologies in oligodendrocytes. The present review provides the current knowledge available in the literature about the intricate relations between tau and oligodendrocytes in health and diseases.


Subject(s)
Oligodendroglia , Tauopathies , tau Proteins , Humans , Tauopathies/metabolism , Tauopathies/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Animals , tau Proteins/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
14.
Article in English | MEDLINE | ID: mdl-39001793

ABSTRACT

Iron deposition is a hallmark of amyotrophic lateral sclerosis (ALS) and has been strongly implicated in its pathogenesis. As a byproduct of cellular oxidative stress, iron dysregulation modifies basal levels of the regulatory iron-binding protein ferritin. Examination of thoracic and lumbar spinal cord tissues found increased ferritin immunostaining in white matter axons that corresponded to areas of increased microgliosis in 8 ALS patients versus 8 normal subjects. Gray matter areas containing the motor neurons also demonstrated increased ferritin and microglia in ALS compared to controls but at lower levels than in the white matter. Motor neurons with or without TDP-43 inclusions did not demonstrate either increased ferritin or associated microglial activation. We also observed an association of ferritin with microglia in cerebral cortical tissue samples of ALS cases and in the spinal cord tissues of transgenic mice expressing the SOD1G93A mutation. Elevated ferritin levels were detected in the insoluble fraction from spinal cord tissues of individuals with ALS. These findings suggest that activated microglia and increased ferritin may play significant roles in ALS progression since they are found closely associated in areas of axonal and cortical degeneration.

15.
Bioorg Med Chem ; 110: 117829, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39002183

ABSTRACT

In pharmaceutical science and drug design the versatility of the pyrrolidine scaffold relating to spatial arrangement, synthetic accessibility and pharmacological profile is a largely explored and most likely interesting one. Nonetheless, few evidences suggest the pivotal role of pyrrolidine as scaffold for multipotent agents in neurodegenerative diseases. We then challenged the enrolling in the field of Alzheimer disease of so far not ravelled targets of this chemical cliché with a structure based and computer-aided design strategy focusing on multi-target action, versatile synthesis as well as pharmacological safeness. To achieve these hits, ten enantiomeric pairs of compounds were obtained and tested, and the biological data will be here presented and discussed. Among the novel compounds, coumarin and sesamol scaffolds containing analogues resulted promising perspectives.

16.
Ageing Res Rev ; : 102415, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002642

ABSTRACT

Alzheimer's disease (AD) and Diabetes mellitus (DM) exhibit comparable pathophysiological pathways. Genetic abnormalities in APP, PS-1, and PS-2 are linked to AD, with diagnostic aid from CSF and blood biomarkers. Insulin dysfunction, termed "type 3 diabetes mellitus" in AD, involves altered insulin signalling and neuronal shrinkage. Insulin influences beta-amyloid metabolism, exacerbating neurotoxicity in AD and amyloid production in DM. Both disorders display impaired glucose transporter expression, hastening cognitive decline. Mitochondrial dysfunction and Toll-like receptor 4-mediated inflammation worsen neurodegeneration in both diseases. ApoE4 raises disease risk, especially when coupled with dyslipidemia common in DM. Targeting shared pathways like insulin-degrading enzyme activation and HSP60 holds promise for therapeutic intervention. Recognizing these interconnected mechanisms underscores the imperative for developing tailored treatments addressing the overlapping pathophysiology of AD and DM, offering potential avenues for more effective management of both conditions.

17.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000336

ABSTRACT

Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.


Subject(s)
MicroRNAs , Neurodegenerative Diseases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Animals , Gene Expression Regulation
18.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000357

ABSTRACT

Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors. We considered the possibility that TRPC1 and TRPC5 channels might be associated with both the high calcium levels and the delay in inner retinal degeneration. TRPC1 is known to mediate protective effects in neurodegenerative processes while TRPC5 promotes cell death. In order to comprehend the implications of these channels in RP, the co-localization and subsequent physical interaction between TRPC1 and TRPC5 in healthy retina (Sprague-Dawley rats) and degenerating (P23H-1, a model of RP) retina were detected by immunofluorescence and proximity ligation assays. There was an overlapping signal in the innermost retina of all animals where TRPC1 and TRPC5 physically interacted. This interaction increased significantly as photoreceptor loss progressed. Both channels function as TRPC1/5 heteromers in the healthy and damaged retina, with a marked function of TRPC1 in response to retinal degenerative mechanisms. Furthermore, our findings support that TRPC5 channels also function in partnership with STIM1 in Müller and retinal ganglion cells. These results suggest that an increase in TRPC1/5 heteromers may contribute to the slowing of the degeneration of the inner retina during the outer retinal degeneration.


Subject(s)
Rats, Sprague-Dawley , Retinal Degeneration , TRPC Cation Channels , Animals , TRPC Cation Channels/metabolism , Rats , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retina/metabolism , Retina/pathology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/genetics , Disease Models, Animal
19.
Biochim Biophys Acta Mol Basis Dis ; : 167353, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004381

ABSTRACT

BACKGROUND: The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS: Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS: Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS: These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.

20.
Purinergic Signal ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004650

ABSTRACT

Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.

SELECTION OF CITATIONS
SEARCH DETAIL
...