Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Trends Neurosci ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39358065

ABSTRACT

Recent work by Wu and colleagues unveiled a previously enigmatic population of spleen-innervating nociceptors from left T8-T13 dorsal root ganglia (DRGs) in mice. They found a specific DRG-spleen sensorineural connection that promotes humoral immunity via a CGRP-CALCRL/RAMP1 axis, providing a valuable target for immune regulation in local microenvironments.

2.
Mil Med Res ; 11(1): 45, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978144

ABSTRACT

Gulf War Illness (GWI) is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms. Among these gastrointestinal symptoms, motility disorders are highly prevalent, presenting as chronic constipation, stomach pain, indigestion, diarrhea, and other conditions that severely impact the quality of life of GWI veterans. However, despite a high prevalence of gastrointestinal impairments among these veterans, most research attention has focused on neurological disturbances. This perspective provides a comprehensive overview of current in vivo research advancements elucidating the underlying mechanisms contributing to gastrointestinal disorders in GWI. Generally, these in vivo and in vitro models propose that neuroinflammation alters gut motility and drives the gastrointestinal symptoms reported in GWI. Additionally, this perspective highlights the potential and challenges of in vitro bioengineering models, which could be a crucial contributor to understanding and treating the pathology of gastrointestinal related-GWI.


Subject(s)
Bioengineering , Gastrointestinal Diseases , Persian Gulf Syndrome , Humans , Persian Gulf Syndrome/physiopathology , Persian Gulf Syndrome/complications , Bioengineering/methods , Bioengineering/trends , Gastrointestinal Diseases/physiopathology , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/complications , Gastrointestinal Tract/physiopathology
3.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38772371

ABSTRACT

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Subject(s)
Calcitonin Gene-Related Peptide , Germinal Center , Immunity, Humoral , Spleen , Animals , Male , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/pharmacology , Cyclic AMP/metabolism , Dinoprostone/metabolism , Ganglia, Spinal/metabolism , Germinal Center/immunology , Mice, Inbred C57BL , Nociceptors/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Signal Transduction , Spleen/innervation , Spleen/immunology , Female
4.
Proc Natl Acad Sci U S A ; 121(11): e2322574121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38451947

ABSTRACT

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.


Subject(s)
Calcitonin Gene-Related Peptide , Neuroimmunomodulation , Calcitonin Gene-Related Peptide/genetics , Receptor Activity-Modifying Protein 1/genetics , Receptors, Calcitonin Gene-Related Peptide , Adaptive Immunity
5.
Front Neurol ; 14: 1093849, 2023.
Article in English | MEDLINE | ID: mdl-36756246

ABSTRACT

Neurogenic pain rises because of nervous system damage or dysfunction and is the most difficult to treat among other pathological pains. Acupuncture has been reported as a great treatment option for neurogenic pain owing to its unlimited advantages. However, previous studies on the analgesic effects of acupuncture for NP were scattered and did not form a whole. In this study, we first comprehensively review the relevant basic articles on acupuncture for NP published in the last 5 years and summarize the analgesic mechanisms of acupuncture in terms of nerve signaling, neuro-immune crosstalk, and metabolic and oxidative stress regulation. Acupuncture inhibits the upstream excitatory system and suppresses neuronal transmission efficiency by downregulating glutamate, NMDA receptors, P2XR, SP, CGRP, and other neurotransmitters and receptors in the spinal cord, as well as plasma channels such as TRPV1, HCN. It can also activate the downstream pain inhibitory pathway by upregulating opioid peptide (ß-endorphin), MOR receptors, GABA and GABA receptors, bi-directional regulating 5-hydroxytryptamine (5-HT) and its receptors (upregulate 5-HT 1A and downregulate 5-HT7R) and stimulating hypothalamic appetite-modifying neurons. Moreover, neuroinflammation in pain can be inhibited by acupuncture through inhibiting JAK2/STAT3, PI3K/mTOR pathways, down regulating chemokine receptor CX3CR1 on microglia and up regulating adenosine receptor A1Rs on astrocytes, inhibiting the activation of glia and reducing TNF-α and other inflammatory substances. Acupuncture also inhibits neuronal glucose metabolism by downregulating mPFC's GLUT-3 and promotes metabolic alterations of the brain, thus exerting an analgesic effect. In conclusion, the regulation of nerve signal transduction and neuroimmune crosstalk at the peripheral and central levels mediates the analgesic effects of acupuncture for neuropathic pain in an integrated manner. These findings provide a reliable basis for better clinical application of acupuncture in the management of neuropathic pain.

6.
Neurobiol Dis ; 177: 106005, 2023 02.
Article in English | MEDLINE | ID: mdl-36680805

ABSTRACT

Depressive disorders can occur in up to 50% of people with multiple sclerosis in their lifetime. If left untreated, comorbid major depressive disorders may not spontaneously remit and is associated with an increased morbidity and mortality. Conversely, epidemiological evidence supports increased psychiatric visit as a significant prodromal event prior to diagnosis of MS. Are there common molecular pathways that contribute to the co-development of MS and psychiatric illnesses? We discuss immune cells that are dysregulated in MS and how such dysregulation can induce or protect against depressive symptoms. This is not meant to be a comprehensive review of all molecular pathways but rather a framework to guide future investigations of immune responses in depressed versus euthymic people with MS. Currently, there is weak evidence supporting the use of antidepressant medication in comorbid MS patients. It is our hope that by better understanding the neuroimmune crosstalk in the context of depression in MS, we can enhance the potential for future therapeutic options.


Subject(s)
Depressive Disorder, Major , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/psychology , Depression , Comorbidity , Antidepressive Agents/therapeutic use
7.
Proc Natl Acad Sci U S A ; 119(37): e2201645119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36070344

ABSTRACT

Neuroimmune interactions are crucial for regulating immunity and inflammation. Recent studies have revealed that the central nervous system (CNS) senses peripheral inflammation and responds by releasing molecules that limit immune cell activation, thereby promoting tolerance and tissue integrity. However, the extent to which this is a bidirectional process, and whether peripheral immune cells also promote tolerance mechanisms in the CNS remains poorly defined. Here we report that helminth-induced type 2 inflammation promotes monocyte responses in the brain that are required to inhibit excessive microglial activation and host death. Mechanistically, infection-induced monocytes express YM1 that is sufficient to inhibit tumor necrosis factor production from activated microglia. Importantly, neuroprotective monocytes persist in the brain, and infected mice are protected from subsequent lipopolysaccharide-induced neuroinflammation months after infection-induced inflammation has resolved. These studies demonstrate that infiltrating monocytes promote CNS homeostasis in response to inflammation in the periphery and demonstrate that a peripheral infection can alter the immunologic landscape of the host brain.


Subject(s)
Brain , Encephalitis , Homeostasis , Monocytes , Neuroimmunomodulation , Trichinella spiralis , Trichinellosis , Animals , Brain/immunology , Brain/parasitology , Encephalitis/immunology , Encephalitis/parasitology , Homeostasis/immunology , Lectins/metabolism , Mice , Microglia/immunology , Monocytes/immunology , Trichinella spiralis/immunology , Trichinellosis/immunology , Trichinellosis/pathology , beta-N-Acetylhexosaminidases/metabolism
8.
Discov Oncol ; 13(1): 80, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35997976

ABSTRACT

Cancer is a major health problem as it is the first or second leading cause of death worldwide. The global cancer burden is expected to rise 47% relative to 2020 cancer incidence. Recently, the fields of neuroscience, neuroimmunology and oncology have elaborated the neuroimmune crosstalk role in tumor initiation, invasion, progression, and metastases. The nervous system exerts a broad impact on the tumor microenvironment by interacting with a complex network of cells such as stromal, endothelial, malignant cells and immune cells. This communication modulates cancer proliferation, invasion, metastasis, induce resistance to apoptosis and promote immune evasion. This paper has two aims, the first aim is to explain neuroimmune crosstalk in cancer, tumor innervation origin and peripheral nervous system, exosomes, and miRNA roles. The second aim is to elaborate neuroimmune crosstalk impact on cancer therapy and research highlighting various potential novel strategies such as use of immune checkpoint inhibitors and anti-neurogenic drugs as single agents, drug repurposing, miRNA-based and si-RNA-based therapies, tumor denervation, cellular therapies, and oncolytic virus therapy.

9.
Front Cell Dev Biol ; 10: 906755, 2022.
Article in English | MEDLINE | ID: mdl-35646918

ABSTRACT

Since the embryo, the nervous system and immune system have been interacting to regulate each other's development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.

10.
Trends Mol Med ; 28(6): 452-462, 2022 06.
Article in English | MEDLINE | ID: mdl-35422379

ABSTRACT

The underlying mechanisms of chronic pruritus (CP), which is often very debilitating for patients, are still not well understood. Over the past few years, peripheral and central mechanisms involving different classes of pruriceptive and nociceptive neuron (e.g., C- and Aδ-fibers), immune cells (e.g., eosinophils, basophils, Th1, Th2, and mast cells) and epithelial cells (e.g., keratinocytes) have been investigated. Based on these, numerous promising target-specific therapies are under development. In this review, we highlight the cells, key mediators, and receptors involved in itch perception and CP, and conclude by summarizing the therapies developed for these conditions.


Subject(s)
Pruritus , Skin , Basophils , Humans , Keratinocytes , Pruritus/etiology
11.
J Pharmacol Sci ; 148(1): 156-161, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34924121

ABSTRACT

We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.


Subject(s)
Adenosine Triphosphate/physiology , HMGB1 Protein/metabolism , Macrophages/metabolism , Neurons/metabolism , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Animals , Male , Mice , Mice, Inbred Strains , Peripheral Nervous System Diseases/immunology , Peripheral Nervous System Diseases/prevention & control , RAW 264.7 Cells , Receptor Cross-Talk/immunology , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X7/metabolism
13.
Brain Behav Immun Health ; 18: 100349, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34723222

ABSTRACT

Social alienation is a pre-eminent ecological threat for humans. In clinical and social care settings its impact is acknowledged in conditions as diverse as severe mood disturbance, chronic pain, and metabolic non-communicable diseases. An integrated psychoneuroimmune perspective shows how threat, injury, healing, and recovery follow through as a continuous process, but accepted cultural and clinical paradigms separating mental from physical illness provide little common ground on which to analyse and apply this continuum in practice. By reviewing the ecological relationships between emotional threat, tissue dyshomeostasis and injury, infection, pain, and mood this article explores not only how primeval somatic responses underpin the evolutionary foundations of depression and somatisation, but also links them to escalating physical non-communicable disease through archived socioeconomic adversity (allostatic load). Social alienation (in the absence of trauma) may prime and activate this ancient repertoire in which sensitised responses lay the foundation for persistent maladaptive states of aversive sensory misinterpretation, behavioural avoidance, anhedonia, and neuroinflammation presenting as widespread non-nociceptive pain, non-pain somatisation, and severe depression. The ecological perspective illuminates perverse clinical presentations, shows how some approaches to care may facilitate self-reinforcement in maladaptive syndromes, and offers pointers for inclusive rehabilitative clinical and social care.

14.
Front Neurosci ; 15: 695670, 2021.
Article in English | MEDLINE | ID: mdl-34408622

ABSTRACT

Inflammatory pain is caused by peripheral tissue injury and inflammation. Inflammation leads to peripheral sensitization, which may further cause central sensitization, resulting in chronic pain and progressive functional disability. Neuroimmune crosstalk plays an essential role in the development and maintenance of inflammatory pain. Studies in recent years have shown that acupuncture can exert anti-inflammatory and analgesic effects by regulating peripheral (i.e., involving local acupoints and inflamed regions) and central neuroimmune interactions. At the local acupoints, acupuncture can activate the TRPV1 and TRPV2 channels of mast cells, thereby promoting degranulation and the release of histamine, adenosine, and other immune mediators, which interact with receptors on nerve endings and initiate neuroimmune regulation. At sites of inflammation, acupuncture enables the recruitment of immune cells, causing the release of opioid peptides, while also exerting direct analgesic effects via nerve endings. Furthermore, acupuncture promotes the balance of immune cells and regulates the release of inflammatory factors, thereby reducing the stimulation of nociceptive receptors in peripheral organs. Acupuncture also alleviates peripheral neurogenic inflammation by inhibiting the release of substance P (SP) and calcitonin gene-related peptide from the dorsal root ganglia. At the central nervous system level, acupuncture inhibits the crosstalk between glial cells and neurons by inhibiting the p38 MAPK, ERK, and JNK signaling pathways and regulating the release of inflammatory mediators. It also reduces the excitability of the pain pathway by reducing the release of excitatory neurotransmitters and promoting the release of inhibitory neurotransmitters from neurons and glial cells. In conclusion, the regulation of neuroimmune crosstalk at the peripheral and central levels mediates the anti-inflammatory and analgesic effects of acupuncture on inflammatory pain in an integrated manner. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of inflammatory diseases.

15.
Cells ; 10(8)2021 07 24.
Article in English | MEDLINE | ID: mdl-34440650

ABSTRACT

A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.


Subject(s)
Ganglia, Spinal/metabolism , Macrophages/metabolism , Neuroimmunomodulation , Neurons/metabolism , Pain Threshold , Pain/metabolism , Signal Transduction , Animals , Cell Communication , Cytokines/metabolism , Ganglia, Spinal/immunology , Ganglia, Spinal/physiopathology , Humans , Inflammation Mediators/metabolism , Macrophages/immunology , Neurons/immunology , Neuropeptides/metabolism , Pain/immunology , Pain/physiopathology , Phenotype
16.
Front Immunol ; 12: 648283, 2021.
Article in English | MEDLINE | ID: mdl-33936068

ABSTRACT

Inflammatory conditions are critically influenced by neuroimmune crosstalk. Cytokines and neurotrophic factors shape the responses of both nervous and immune systems. Although much progress has been made, most findings to date are based on expression of recombinant (tagged) proteins. The examination of receptor interactions by immunoprecipitation (IP) at endogenous levels provides further insight into the more subtle regulations of immune responses. Here, we present a comprehensive workflow and an optimized IP protocol that provide step-by-step instructions to investigate neurotrophin receptor p75NTR at endogenous, low abundance levels: from lysate preparation and confirmation of receptor expression to antibody validation and successful detection of protein-protein interactions. We employ human melanoma cell line A375 to validate specific antibodies and IP conditions, and apply these methods to explore p75NTR interactions in human leukemic plasmacytoid dendritic cell line PMDC05 detecting 14-3-3ϵ:p75NTR interaction in this cell type. With p75NTR as an exemplary protein, our approach provides a strategy to detect specific interaction partners even under endogenous, low abundance expression conditions.


Subject(s)
Antibodies/immunology , Hybridomas/immunology , Immunoprecipitation/methods , Nerve Tissue Proteins/immunology , Receptors, Nerve Growth Factor/immunology , Workflow , 14-3-3 Proteins/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Dendritic Cells/immunology , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Humans , Mass Spectrometry , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Binding , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism
18.
Front Immunol ; 12: 785355, 2021.
Article in English | MEDLINE | ID: mdl-34975876

ABSTRACT

The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.


Subject(s)
Aging/immunology , COVID-19/immunology , Immunity, Innate/immunology , Lung/immunology , Nociceptors/immunology , SARS-CoV-2/immunology , Transient Receptor Potential Channels/immunology , Aged , COVID-19/virology , Humans , Lung/innervation , Lung/virology , Nociceptors/metabolism , Nociceptors/virology , SARS-CoV-2/physiology , Sensory Receptor Cells/immunology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/virology , Transient Receptor Potential Channels/metabolism
19.
Chin J Physiol ; 63(6): 263-275, 2020.
Article in English | MEDLINE | ID: mdl-33380611

ABSTRACT

Whereas neuroimmune crosstalk between the sympathetic nervous system (SNS) and immune cells in the pathophysiology of hypertension is recognized, the exact effect of SNS on T-lymphocyte in hypertension remains controversial. This study assessed the hypothesis that excitation of the SNS activates splenic T-lymphocytes through redox signaling, leading to the production of pro-inflammatory cytokines and the development of hypertension. Status of T-lymphocyte activation, reactive oxygen species (ROS) production and pro-inflammatory cytokines expression in the spleen were examined in a rodent model of hypertension programmed by maternal high fructose diet (HFD) exposure. Maternal HFD exposure enhanced SNS activity and activated both CD4+ and CD8+ T-lymphocytes in the spleen of young offspring, compared to age-matched offspring exposed to maternal normal diet (ND). Maternal HFD exposure also induced tissue oxidative stress and expression of pro-inflammatory cytokines in the spleen of HFD offspring. All those cellular and molecular events were ameliorated following splenic nerve denervation (SND) by thermoablation. In contrast, activation of splenic sympathetic nerve by nicotine treatment resulted in the enhancement of tissue ROS level and activation of CD4+ and CD8+ T-cells in the spleen of ND offspring; these molecular events were attenuated by treatment with a ROS scavenger, tempol. Finally, the increase in systolic blood pressure (SBP) programmed in adult offspring by maternal HFD exposure was diminished by SND, whereas activation of splenic sympathetic nerve increased basal SBP in young ND offspring. These findings suggest that excitation of the SNS may activate splenic T-lymphocytes, leading to hypertension programming in adult offspring induced by maternal HFD exposure. Moreover, tissue oxidative stress induced by the splenic sympathetic overactivation may serve as a mediator that couples the neuroimmune crosstalk to prime programmed hypertension in HFD offspring.


Subject(s)
Hypertension , Spleen , Blood Pressure , CD8-Positive T-Lymphocytes , Fructose , Humans
20.
Front Immunol ; 11: 747, 2020.
Article in English | MEDLINE | ID: mdl-32431701

ABSTRACT

It is now apparent that platelet function is more diverse than originally thought, shifting the view of platelets from blood cells involved in hemostasis and wound healing to major contributors to numerous regulatory processes across different tissues. Given their intriguing ability to store, produce and release distinct subsets of bioactive molecules, including intercellular signaling molecules and neurotransmitters, platelets may play an important role in orchestrating healthy brain function. Conversely, a number of neurodegenerative conditions have recently been associated with platelet dysfunction, further highlighting the tissue-independent role of these cells. In this review we summarize the requirements for platelet-neural cell communication with a focus on neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets and the proteins which they release to counteract these conditions.


Subject(s)
Blood Platelets/metabolism , Cell Communication , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Signal Transduction , Animals , Brain/metabolism , Drug Delivery Systems/methods , Humans , Mice , Multiple Sclerosis/metabolism , Platelet Activation , Platelet-Rich Plasma
SELECTION OF CITATIONS
SEARCH DETAIL