Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Folia Neuropathol ; 62(1): 21-31, 2024.
Article in English | MEDLINE | ID: mdl-38741434

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are a growing group of neurodegenerative storage diseases, in which specific features are sought to facilitate the creation of a universal diagnostic algorithm in the future. In our ultrastructural studies, the group of NCLs was represented by the CLN2 disease caused by a defect in the TPP1 gene encoding the enzyme tripeptidyl-peptidase 1. A 3.5-year-old girl was affected by this disease. Due to diagnostic difficulties, the spectrum of clinical, enzymatic, and genetic tests was extended to include analysis of the ultrastructure of cells from a rectal biopsy. The aim of our research was to search for pathognomonic features of CLN2 and to analyse the mitochondrial damage accompanying the disease. In the examined cells of the rectal mucosa, as expected, filamentous deposits of the curvilinear profile (CVP) type were found, which dominated quantitatively. Mixed deposits of the CVP/fingerprint profile (FPP) type were observed less frequently in the examined cells. A form of inclusions of unknown origin, not described so far in CLN2 disease, were wads of osmophilic material (WOMs). They occurred alone or co-formed mixed deposits. In addition, atypically damaged mitochondria were observed in muscularis mucosae. Their deformed cristae had contact with inclusions that looked like CVPs. Considering the confirmed role of the c subunit of the mitochondrial ATP synthase in the formation of filamentous lipopigment deposits in the group of NCLs, we suggest the possible significance of other mitochondrial proteins, such as mitochondrial contact site and cristae organizing system (MICOS), in the formation of these deposits. The presence of WOMs in the context of searching for ultrastructural pathognomonic features in CLN2 disease also requires further research.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inclusion Bodies , Mitochondria , Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/genetics , Humans , Female , Child, Preschool , Mitochondria/pathology , Mitochondria/ultrastructure , Inclusion Bodies/pathology , Inclusion Bodies/ultrastructure , Biopsy , Rectum/pathology , Serine Proteases/genetics , Aminopeptidases/genetics
2.
Pediatr Neurol ; 155: 149-155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653183

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) represent a heterogeneous group of inherited metabolic lysosomal disorders characterized by neurodegeneration. This study sought to describe the clinical and molecular characteristics of NCLs in Saudi Arabia and determine the most common types in that population. METHODS: A retrospective review of electronic medical records was conducted for 63 patients with NCL (55 families) from six tertiary and referral centers in Saudi Arabia between 2008 and 2022. Clinical, radiological, and neurophysiological data as well as genetic diagnoses were reviewed. RESULTS: CLN6 was the predominant type, accounting for 45% of cases in 25 families. The most common initial symptoms were speech delay (53%), cognitive decline (50%) and/or gait abnormalities (48%), and seizure (40%). Behavioral symptomatology was observed in 20%, whereas visual impairment was less frequently (9.3%) encountered. Diffuse cerebral and cerebellar atrophy was the predominant finding on brain magnetic resonance imaging. Electroencephalography generally revealed background slowing in all patients with generalized epileptiform discharges in 60%. The most common genotype detected was the p.Ser265del variant found in 36% (20 of 55 families). The most rapidly progressive subtypes were CLN2 and CLN6. Two patients with each died at age five years. The earliest age at which a patient was nonambulatory was two years in a patient with CLN14. CONCLUSIONS: This is the largest molecularly confirmed NCL cohort study from Saudi Arabia. Characterizing the natural history of specific NLC types can increase understanding of the underlying pathophysiology and distinctive genotype-phenotype characteristics, facilitating early diagnosis and treatment initiation as well as genetic counseling for families.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Neuronal Ceroid-Lipofuscinoses/diagnosis , Saudi Arabia , Male , Female , Child , Child, Preschool , Retrospective Studies , Adolescent , Membrane Proteins/genetics , Infant , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Young Adult , Magnetic Resonance Imaging
3.
J Vet Diagn Invest ; 36(3): 438-446, 2024 May.
Article in English | MEDLINE | ID: mdl-38516801

ABSTRACT

Thirteen American Hereford cattle were reported blind with presumed onset when ~12-mo-old. All blind cattle shared a common ancestor through both the maternal and paternal pedigrees, suggesting a recessive genetic origin. Given the pedigree relationships and novel phenotype, we characterized the ophthalmo-pathologic changes associated with blindness and identified the responsible gene variant. Ophthalmologic examinations of 5 blind cattle revealed retinal degeneration. Histologically, 2 blind cattle had loss of the retinal photoreceptor layer. Whole-genome sequencing (WGS) of 7 blind cattle and 9 unaffected relatives revealed a 1-bp frameshift deletion in ceroid lipofuscinosis neuronal 3 (CLN3; chr25 g.26043843del) for which the blind cattle were homozygous and their parents heterozygous. The identified variant in exon 16 of 17 is predicted to truncate the encoded protein (p. Pro369Argfs*8) battenin, which is involved in lysosomal function necessary for photoreceptor layer maintenance. Of 462 cattle genotyped, only blind cattle were homozygous for the deletion. A query of WGS data of > 5,800 animals further revealed that the variant was only observed in related Hereford cattle. Mutations in CLN3 are associated with human juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which results in early-onset retinal degeneration and lesions similar to those observed in our cases. Our data support the frameshift variant of CLN3 as causative of blindness in these Hereford cattle, and provide additional evidence of the role of this gene in retinal lesions, possibly as a model for human non-syndromic JNCL.


Subject(s)
Cattle Diseases , Retinal Degeneration , Animals , Cattle , Retinal Degeneration/veterinary , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Cattle Diseases/genetics , Cattle Diseases/pathology , Female , Pedigree , Male , Membrane Glycoproteins/genetics , Neuronal Ceroid-Lipofuscinoses/veterinary , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Molecular Chaperones/genetics , Frameshift Mutation
4.
Genes (Basel) ; 15(2)2024 01 27.
Article in English | MEDLINE | ID: mdl-38397161

ABSTRACT

The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.


Subject(s)
Myoclonic Epilepsies, Progressive , Myoclonus , Humans , Myoclonic Epilepsies, Progressive/diagnosis , Myoclonic Epilepsies, Progressive/genetics , Myoclonic Epilepsies, Progressive/therapy
5.
Mol Neurobiol ; 61(1): 15-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37566176

ABSTRACT

Parkinsonism is a clinical syndrome that is caused by Parkinson's disease (PD) and other neurodegenerative diseases. Here, we report a patient who exhibited progressive parkinsonism, epilepsy, and cognitive impairment and was diagnosed with adult-onset neuronal ceroid lipofuscinoses (ANCLs). The patient carries a mutation (p.Leu116 del) in the DNAJC5 gene that encodes cysteine string protein (CSPα). Since the patient shows typical parkinsonism and loss of dopamine transporter in the striatum, we investigated the effect of wild-type and L116del mutant CSPα on the aggregation of α-synuclein (α-syn) and neurotoxicity in vitro. Overexpression of wild-type CSPα attenuated the phosphorylation, ubiquitination, and aggregation of α-syn induced by α-syn fibrils. Moreover, wild-type CSPα inhibits oxidative stress and cell apoptosis and rescues inefficient SNARE complex formation induced by α-syn fibrils in SH-SY5Y cells. However, these protective effects of CSPα were abolished by the L116del mutation. Collectively, these results indicate that L116 deletion in CSPα promotes α-syn pathology and neurotoxicity. Boosting CSPα may be therapeutically useful for treating synucleinopathies.


Subject(s)
Chromans , Neuroblastoma , Parkinson Disease , Adult , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mutation , Parkinson Disease/genetics
6.
Arq. neuropsiquiatr ; 82(4): s00441786022, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557136

ABSTRACT

Abstract Henrik and Torsten Sjögren (/'ogrƏn/ or SHOH-grƏn) were two Swedish physicians living in the same period, but completely unrelated, except for their notable contributions to Medicine. The first one described keratoconjunctivitis sicca, afterward called Sjögren's syndrome, and a fishing net aspect retinal pigmentation affecting visual acuity, nowadays known as Sjögren reticular dystrophy. The last one contributed to the understanding of Spielmeyer-Sjögren disease, Marinesco-Sjögren, and Sjögren-Larsson syndromes, all related to genetic disorders and neurological symptoms. In this paper, we aim to describe each disorder, in order to avoid any misunderstanding in diagnosis and for historical record.


Resumo Henrik e Torsten Sjögren (/'ogrƏn/ or SHOH-grƏn) foram dois médicos suecos que viveram na mesma época, mas não tinham nenhuma relação entre si, exceto por suas notáveis contribuições à medicina. O primeiro descreveu a ceratoconjuntivite sicca, posteriormente chamada de síndrome de Sjögren, e uma pigmentação da retina com aspecto de rede de pesca que afeta a acuidade visual, hoje conhecida como distrofia reticular de Sjögren. O último contribuiu para a compreensão da doença de Spielmeyer-Sjögren, das síndromes de Marinesco-Sjögren e Sjögren-Larsson, todas relacionadas a distúrbios genéticos e sintomas neurológicos. Neste artigo, pretendemos descrever cada desordem, a fim de evitar qualquer mal-entendido no diagnóstico e para registro histórico.

7.
Front Neurol ; 14: 1216861, 2023.
Article in English | MEDLINE | ID: mdl-37771451

ABSTRACT

Background: Recurrent non-epileptic episodes of frightened facial and body expression occur in more than half of post-adolescent patients with juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3 disease). Clinically, the episodes look similar to the attacks of paroxysmal sympathetic hyperactivity (PSH) commonly seen following traumatic brain injury (TBI). The episodes occur when the patients are exposed to separation, hear loud sounds or are otherwise bothered by discomfort and as in PSH following TBI, the attacks are difficult to prevent and/or treat. Aim and methods: Based on present knowledge of triggering factors, the neural anxiety/fear circuit, its afferent and efferent pathways and documented CLN3 disease-impact on these tracks, the current study discusses a rational approach how to prevent and/or treat the attacks. Results: Patients with JNCL have a disturbed somatosensory modulation leading to a reduced threshold of pain; a degeneration within the neural anxiety/fear circuit leading to an imbalance of central network inhibition and excitation pathways; and finally, an, with advancing age, increasing autonomic imbalance leading to a significant dominance of the sympathetic neural system. Discussion: Theoretically, there are three points of attack how to prevent or treat the episodes: (1) increase in threshold of discomfort impact; (2) modulation of imbalance of central network inhibition and excitation, and (3) restoring the balance between the sympathetic and parasympathetic neural systems prompted by a parasympathetic withdrawal. As to (1) and (2), prevention should have the greatest priority. As regards (3), research of transcutaneous vagal stimulation treatment in JNCL is warranted.

8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166756, 2023 08.
Article in English | MEDLINE | ID: mdl-37209872

ABSTRACT

• Neuronal Ceroido Lipofuscinoses (NCL) are inherited, neurodegenerative disorders associated with lysosomal storage. • Impaired autophagy plays a pathogenetic role in several NCL forms, including CLN3 disease, but study on human brains are lacking. • In post-mortem brain samples of a CLN3 patient the LC3-I to LC3-II shift was consistent with activated autophagy. However, the autophagic process seemed to be ineffective due to the presence of lysosomal storage markers. • After fractionation with buffers of increasing detergent-denaturing strength, a peculiar solubility pattern of LC3-II was observed in CLN3 patient's samples, suggesting a different lipid composition of the membranes where LC3-II is stacked.


Subject(s)
Lysosomal Storage Diseases , Neuronal Ceroid-Lipofuscinoses , Humans , Detergents/pharmacology , Membrane Glycoproteins/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Molecular Chaperones/metabolism , Lysosomal Storage Diseases/pathology , Brain/metabolism
9.
Doc Ophthalmol ; 146(3): 241-256, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36964447

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS: Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS: Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS: CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.


Subject(s)
Electroretinography , Retinal Diseases , Child , Female , Humans , Male , Retina , Multimodal Imaging , Electrophysiology , Tomography, Optical Coherence/methods , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics
10.
Arq. neuropsiquiatr ; 81(3): 284-295, Mar. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439449

ABSTRACT

Abstract Neuronal ceroid lipofuscinosis type 2 (CLN2) is a rare neurodegenerative genetic disease that affects children in early life. Its classic form is rapidly progressive, leading to death within the first 10 years. The urge for earlier diagnosis increases with the availability of enzyme replacement therapy. A panel of nine Brazilian child neurologists combined their expertise in CLN2 with evidence from the medical literature to establish a consensus to manage this disease in Brazil. They voted 92 questions including diagnosis, clinical manifestations, and treatment of the disease, considering the access to healthcare in this country. Clinicians should suspect CLN2 disease in any child, from 2 to 4 years old, with language delay and epilepsy. Even though the classic form is the most prevalent, atypical cases with different phenotypes can be found. Electroencephalogram, magnetic resonance imaging, molecular and biochemical testing are the main tools to investigateand confirm the diagnosis. However, we have limited access to molecular testing in Brazil, and rely on the support from the pharmaceutical industry. The management of CLN2 should involve a multidisciplinary team and focus on the quality of life of patients and on family support. Enzyme replacement therapy with Cerliponase α is an innovative treatment approved in Brazil since 2018; it delays functional decline and provides quality of life. Given the difficulties for the diagnosis and treatment of rare diseases in our public health system, the early diagnosis of CLN2 needs improvement as enzyme replacement therapy is available and modifies the prognosis of patients.


Resumo Lipofuscinose ceróide neuronal (CLN2) é uma doença genética neurodegenerativa rara que afeta crianças nos primeiros anos de vida. A sua forma clássica é rapidamente progressiva, levando à morte nos primeiros 10 anos. A necessidade de um diagnóstico precoce aumenta com a disponibilidade do tratamento de terapia enzimática. Um painel de nove neurologistas infantis brasileiros combinou sua experiência em CLN2 com evidências da literatura médica para estabelecer um consenso no manejo desta doença no Brasil. Eles votaram 92 questões abordando diagnóstico, manifestações clínicas e tratamento, considerando o acesso à saúde no Brasil. Deve-se suspeitar de CLN2 em qualquer criança de 2 a 4 anos de idade que apresente atraso de linguagem e epilepsia. Apesar da forma clássica ser a mais prevalente, podem ser encontrados casos atípicos com diferentes fenótipos. Eletroencefalograma, ressonância magnética, testes moleculares e bioquímicos são as principais ferramentas para investigar e confirmar o diagnóstico. No entanto, o acesso aos testes moleculares é limitado no Brasil, necessitando contar com o apoio da indústria farmacêutica. O manejo da CLN2 deve envolver uma equipe multidisciplinar e focar na qualidade de vida dos pacientes e no apoio familiar. A terapia de reposição enzimática com Cerliponase alfa é um tratamento inovador aprovado no Brasil desde 2018; ele retarda o declínio funcional e proporciona qualidade de vida. Diante das dificuldades para o diagnóstico e tratamento de doenças raras em nosso sistema público de saúde, o diagnóstico precoce de CLN2 precisa de melhorias pois a terapia de reposição enzimática está disponível e modifica o prognóstico dos pacientes.

11.
EBioMedicine ; 85: 104314, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36374771

ABSTRACT

BACKGROUND: Batten disease is characterized by cognitive and motor impairment, retinal degeneration, and seizures leading to premature death. Recent studies have shown efficacy for a gene therapy approach for CLN7 Batten disease. This gene therapy approach is promising to treat cognitive and motor impairment, but is not likely to delay vision loss. Additionally, the natural progression of retinal degeneration in CLN7 Batten disease patients is not well-known. METHODS: We performed visual examinations on five patients with CLN7 Batten disease and found that patients were far progressed in degeneration within their first five years of life. To better understand the disease progression, we characterized the retina of a preclinical mouse model of CLN7 Batten disease, through the age at which mice present with paralysis and premature death. FINDINGS: We found that this preclinical model shows signs of photoreceptor to bipolar synaptic defects early, and displays rod-cone dystrophy with late loss of bipolar cells. This vision loss could be followed not only via histology, but using clinical live imaging similar to that used in human patients. INTERPRETATION: Natural history studies of rare paediatric neurodegenerative conditions are complicated by the rapid degeneration and limited availability of patients. Characterization of degeneration in the preclinical model allows for future experiments to better understand the mechanisms underlying the retinal disease progression in order to find therapeutics to treat patients, as well as to evaluate these therapeutic options for future human clinical trials. FUNDING: Van Sickle Family Foundation Inc., NIHP30EY030413, Morton Fichtenbaum Charitable Trust and 5T32GM131945-03.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Retinal Degeneration , Humans , Child , Animals , Mice , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/therapy , Neuronal Ceroid-Lipofuscinoses/pathology , Retinal Degeneration/etiology , Retinal Degeneration/therapy , Retina/pathology , Genetic Therapy , Vision Disorders/therapy , Disease Progression , Disease Models, Animal
12.
Front Neurol ; 13: 1061363, 2022.
Article in English | MEDLINE | ID: mdl-36438942

ABSTRACT

Background: The Neuronal Ceroid Lipofuscinoses (NCLs) may be considered distinct neurodegenerative disorders with separate underlying molecular causes resulting from monogenetic mutations. An alternative hypothesis is to consider the NCLs as related diseases that share lipofuscin pathobiology as the common core feature, but otherwise distinguished by different a) initial anatomic location, and b) disease propagation. Methods: We have tested this hypothesis by comparing known differences in symptomatology and pathology of the CLN1 phenotype caused by complete loss of PPT1 function (i.e., the classical infantile form) and of the classical juvenile CLN3 phenotype. These two forms of NCL represent early onset and rapidly progressing vs. late onset and slowly progressing disease modalities respectively. Results: Despite displaying similar pathological endpoints, the clinical phenotypes and the evidence of imaging and postmortem studies reveal strikingly different time courses and distributions of disease propagation. Data from CLN1 disease are indicative of disease propagation from the body, with early effects within the spinal cord and subsequently within the brainstem, the cerebral hemispheres, cerebellum and retina. In contrast, the retina appears to be the most vulnerable organ in CLN3, and the site where pathology is first present. Pathology subsequently is present in the occipital connectome of the CLN3 brain, followed by a top-down propagation in which cerebral and cerebellar atrophy in early adolescence is followed by involvement of the peripheral nerves in later adolescence/early twenties, with the extrapyramidal system also affected during this time course. Discussion: The propagation of disease in these two NCLs therefore has much in common with the "Brain-first" vs. "Body-first" models of alpha-synuclein propagation in Parkinson's disease. CLN1 disease represents a "Body-first" or bottom-up disease propagation and CLN3 disease having a "Brain-first" and top-down propagation. It is noteworthy that the varied phenotypes of CLN1 disease, whether it starts in infancy (infantile form) or later in childhood (juvenile form), still fit with our proposed hypothesis of a bottom-up disease propagation in CLN1. Likewise, in protracted CLN3 disease, where both cognitive and motor declines are delayed, the initial manifestations of disease are also seen in the outer retinal layers, i.e., identical to classical Juvenile NCL disease.

13.
Biomark Insights ; 17: 11772719221107765, 2022.
Article in English | MEDLINE | ID: mdl-36212622

ABSTRACT

Introduction: CLN3 Batten disease is a rare pediatric neurodegenerative lysosomal disorder caused by biallelic disease-associated variants in CLN3. Despite decades of intense research, specific biofluid biomarkers of disease status have not been reported, hindering clinical development of therapies. Thus, we sought to determine whether individuals with CLN3 Batten disease have elevated levels of specific metabolites in blood. Methods: We performed an exhaustive metabolomic screen using serum samples from a novel minipig model of CLN3 Batten disease and validated findings in CLN3 pig serum and CSF and Cln3 mouse serum. We further validate biomarker candidates with a retrospective analysis of plasma and CSF samples collected from participants in a natural history study. Plasma samples were evaluated from 22 phenotyped individuals with CLN3 disease, 15 heterozygous carriers, and 6 non-affected non-carriers (NANC). Results: CLN3 pig serum samples from 4 ages exhibited large elevations in 4 glycerophosphodiester species: glycerophosphoinositol (GPI), glycerophosphoethanolamine (GPE), glycerophosphocholine (GPC), and glycerophosphoserine (GPS). GPI and GPE exhibited the largest elevations, with similar elevations found in CLN3 pig CSF and Cln3 mouse serum. In plasma samples from individuals with CLN3 disease, glycerophosphoethanolamine and glycerophosphoinositol were significantly elevated with glycerophosphoinositol exhibiting the clearest separation (mean 0.1338 vs 0.04401 nmol/mL for non-affected non-carriers). Glycerophosphoinositol demonstrated excellent sensitivity and specificity as a biomarker, with a receiver operating characteristic area under the curve of 0.9848 (P = .0003). Conclusions: GPE and GPI could have utility as biomarkers of CLN3 disease status. GPI, in particular, shows consistent elevations across a diverse cohort of individuals with CLN3. This raises the potential to use these biomarkers as a blood-based diagnostic test or as an efficacy measure for disease-modifying therapies.

14.
Adv Protein Chem Struct Biol ; 132: 89-109, 2022.
Article in English | MEDLINE | ID: mdl-36088080

ABSTRACT

The Neuronal Ceroid Lipofuscinoses (NCL) are a group of progressive neurodegenerative disorders, associated with 14 Ceroid Lipofuscinosis Neuronal genes (CLN1-14). The mutations in the Palmitoyl-Protein Thioesterase 1 (PPT1) protein serve as one of the major reasons for the causative of NCL. The PPT1 involves degrading and modifying cysteine residues in proteins or peptides by removing thioester-linked fatty acyl groups like palmitate prefers acyl chains of 14-18 carbons in length. In this study, we have analyzed the impact of PPT1 mutations on the deleteriousness, stability, conservative nature of amino acid, and impact of mutations on the protein structure. We have also used molecular dynamics simulations using GROMACS to perceive the alteration in the dynamic behavior of the PPT1 at the residual level. In this study, we have retrieved 23 PPT1 mutations from the UniProt database, and these were subjected to a series of analyses using varied computer algorithms. From these analyses, out of 23 mutations, 16 mutations were identified as deleterious. Among 16, eight mutations were identified to destabilize the protein structure, and finally, two mutations (W38C and L222P) were found to be positioned in the highly conserved region. The structural impact study observed that the mutant proline could disrupt the alpha helix formed by the leucine at position 222. Finally, from the molecular dynamics simulations, we observed that due to the mutations (W38C and L222P), the protein had experienced higher deviation, fluctuation, and lower compactness. These structural changes elucidate that these mutations can impact the structure and function of the PPT1 protein.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Thiolester Hydrolases/metabolism , Humans , Membrane Proteins/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics
15.
Pediatr Neurol ; 136: 50-55, 2022 11.
Article in English | MEDLINE | ID: mdl-36137348

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) (hereafter described as CLN disease) comprise a rare and life-limiting set of genetically inherited neurodegenerative disorders that are characterized by abnormal lysosomal storage. The NCL disorders are, collectively, the most common group of degenerative brain disorders in children. PATIENT DESCRIPTIONS: We report two cases of CLN disease that were diagnosed and treated at the Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. Both cases of CLN disease (CLN1 and CLN6 diagnosed in 2016 and 2017, respectively) profiled in this report presented with clinical features of Rett syndrome. In the first case, a 2-year-old girl presented with Rett-like clinical features, including global developmental regression and hand-wringing action. Single-gene analysis of the MECP2 gene was negative. However, PPT1 gene sequencing revealed a novel homozygous frameshift mutation, c.629_630dupGT (p.Ile211Valfs∗10). In the second case, a 7.5-year-old girl presented with ataxia, progressive myoclonic epilepsy, and Rett-like hand-wringing. A c.794_796delCCT variant in the CLN6 gene was identified by whole-exome sequencing. Fingerprint bodies from electron microscopy of the skin also supported a diagnosis of CLN disease in our second case. DISCUSSION: Presentation with clinical features of Rett syndrome has only been reported in patients diagnosed with CLN1 and CLN7 disease, and never in those with CLN6. CONCLUSIONS: Physicians should suspect and investigate for CLN disease in patients with Rett-like phenotype who are negative for MECP2 mutation, especially in patients with visual impairment and early prominent brain atrophy.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Rett Syndrome , Child , Homozygote , Humans , Membrane Proteins/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics , Phenotype , Thailand
16.
Front Neurol ; 13: 920421, 2022.
Article in English | MEDLINE | ID: mdl-36034292

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) comprise 13 hereditary neurodegenerative pathologies of very low frequency that affect individuals of all ages around the world. All NCLs share a set of symptoms that are similar to other diseases. The exhaustive collection of data from diverse sources (clinical, genetic, neurology, ophthalmology, etc.) would allow being able in the future to define this group with greater precision for a more efficient diagnostic and therapeutic approach. Despite the large amount of information worldwide, a detailed study of the characteristics of the NCLs in South America and the Caribbean region (SA&C) has not yet been done. Here, we aim to present and analyse the multidisciplinary evidence from all the SA&C with qualitative weighting and biostatistical evaluation of the casuistry. Seventy-one publications from seven countries were reviewed, and data from 261 individuals (including 44 individuals from the Cordoba cohort) were collected. Each NCL disease, as well as phenotypical and genetic data were described and discussed in the whole group. The CLN2, CLN6, and CLN3 disorders are the most frequent in the region. Eighty-seven percent of the individuals were 10 years old or less at the onset of symptoms. Seizures were the most common symptom, both at onset (51%) and throughout the disease course, followed by language (16%), motor (15%), and visual impairments (11%). Although symptoms were similar in all NCLs, some chronological differences could be observed. Sixty DNA variants were described, ranging from single nucleotide variants to large chromosomal deletions. The diagnostic odyssey was probably substantially decreased after medical education activities promoted by the pharmaceutical industry and parent organizations in some SA&C countries. There is a statistical deviation in the data probably due to the approval of the enzyme replacement therapy for CLN2 disease, which has led to a greater interest among the medical community for the early description of this pathology. As a general conclusion, it became clear in this work that the combined bibliographical/retrospective evaluation approach allowed a general overview of the multidisciplinary components and the epidemiological tendencies of NCLs in the SA&C region.

17.
Genes (Basel) ; 13(8)2022 08 05.
Article in English | MEDLINE | ID: mdl-36011304

ABSTRACT

The CLN8 disease type refers to one of the neuronal ceroid lipofuscinoses (NCLs) which are the most common group of neurodegenerative diseases in childhood. The clinical phenotypes of this disease are progressive neurological deterioration that could lead to seizures, dementia, ataxia, visual failure, and various forms of abnormal movement. In the current study, we describe two patients who presented with atypical phenotypic manifestation and protracted clinical course of CLN8 carrying a novel compound heterozygous variant at the CLN8 gene. Our patients developed a mild phenotype of CLN8 disease: as they presented mild epilepsy, cognitive decline, mild learning disability, attention-deficit/hyperactivity disorder (ADHD), they developed a markedly protracted course of motor decline. Bioinformatic analyses of the compound heterozygous CLN8 gene variants were carried out. Most of the variants seem likely to act by compromising the structural integrity of regions within the protein. This in turn is expected to reduce the overall stability of the protein and render the protein less active to various degrees. The cases in our study confirmed and expanded the effect of compound heterozygous variants in CLN8 disease.


Subject(s)
Epilepsy , Neuronal Ceroid-Lipofuscinoses , Computational Biology , Humans , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Phenotype
18.
Front Cell Dev Biol ; 10: 930235, 2022.
Article in English | MEDLINE | ID: mdl-35756993

ABSTRACT

MFSD8 is a transmembrane protein that has been reported to transport chloride ions across the lysosomal membrane. Mutations in MFSD8 are associated with a subtype of Batten disease called CLN7 disease. Batten disease encompasses a family of 13 inherited neurodegenerative lysosomal storage diseases collectively referred to as the neuronal ceroid lipofuscinoses (NCLs). Previous work identified an ortholog of human MFSD8 in the social amoeba D. discoideum (gene: mfsd8, protein: Mfsd8), reported its localization to endocytic compartments, and demonstrated its involvement in protein secretion. In this study, we further characterized the effects of mfsd8 loss during D. discoideum growth and early stages of multicellular development. During growth, mfsd8 - cells displayed increased rates of proliferation, pinocytosis, and expansion on bacterial lawns. Loss of mfsd8 also increased cell size, inhibited cytokinesis, affected the intracellular and extracellular levels of the quorum-sensing protein autocrine proliferation repressor A, and altered lysosomal enzyme activity. During the early stages of development, loss of mfsd8 delayed aggregation, which we determined was at least partly due to impaired cell-substrate adhesion, defects in protein secretion, and alterations in lysosomal enzyme activity. Overall, these results show that Mfsd8 plays an important role in modulating a variety of processes during the growth and early development of D. discoideum.

19.
Front Neurol ; 13: 866983, 2022.
Article in English | MEDLINE | ID: mdl-35509995

ABSTRACT

The neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset neurodegenerative lysosomal storage disorders mainly affecting the brain and the retina. In the NCLs, disease-causing mutations in 13 different ceroid lipofuscinoses genes (CLN) have been identified. The clinical symptoms include seizures, progressive neurological decline, deterioration of motor and language skills, and dementia resulting in premature death. In addition, the deterioration and loss of vision caused by progressive retinal degeneration is another major hallmark of NCLs. To date, there is no curative therapy for the treatment of retinal degeneration and vision loss in patients with NCL. In this review, the key findings of different experimental approaches in NCL animal models aimed at attenuating progressive retinal degeneration and the decline in retinal function are discussed. Different approaches, including experimental enzyme replacement therapy, gene therapy, cell-based therapy, and immunomodulation therapy were evaluated and showed encouraging therapeutic benefits. Recent experimental ocular gene therapies in NCL animal models with soluble lysosomal enzyme deficiencies and transmembrane protein deficiencies have shown the strong potential of gene-based approaches to treat retinal dystrophies in NCLs. In CLN3 and CLN6 mouse models, an adeno-associated virus (AAV) vector-mediated delivery of CLN3 and CLN6 to bipolar cells has been shown to attenuate the retinal dysfunction. Therapeutic benefits of ocular enzyme replacement therapies were evaluated in CLN2 and CLN10 animal models. Since brain-targeted gene or enzyme replacement therapies will most likely not attenuate retinal neurodegeneration, there is an unmet need for treatment options additionally targeting the retina in patients with NCL. The long-term benefits of these therapeutic interventions aimed at attenuating retinal degeneration and vision loss in patients with NCL remain to be investigated in future clinical studies.

20.
Orphanet J Rare Dis ; 17(1): 179, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505348

ABSTRACT

BACKGROUND: Ceroid lipofuscinoses neuronal 6 (CLN6) disease belongs to the neuronal ceroid lipofuscinoses (NCLs), complex and genetically heterogeneous disorders with wide geographical and phenotypic variation. The first clinical signs usually appear between 18 months and 8 years, but examples of later-onset have also been reported. Common manifestations include ataxia, seizures, vision impairment, and developmental regression. Because these are shared by other neurological diseases, identification of CLN6 genetic variants is imperative for early diagnosis. RESULTS: We present one of the largest cohorts to date of genetically diagnosed CLN6 patients screened at a single center. In total 97 subjects, originating from 20 countries were screened between 2010 and 2020. They comprised 86 late-infantile, eight juvenile, and three adult-onset cases (two patients with Kufs disease type A, and one with teenage progressive myoclonic epilepsy). The male to female ratio was 1.06: 1.00. The age at referral was between six months and 33 years. The time from disease onset to referral ranged from less than 1 month to 8.3 years. The clinical phenotype consisted of a combination of symptoms, as reported before. We characterized a total of 45 distinct variants defining 45 distinct genotypes. Twenty-four were novel variants, some with distinct geographic associations. Remarkably, c.257A > G (p.H86R) was present in five out of 23 unrelated Egyptian individuals but in no patients from other countries. The most common genotype was homozygosity for the c.794_796del in-frame deletion. It was present in about one-third of CLN6 patients (28 unrelated cases, and 2 familial cases), all with late-infantile onset. Variants with a high likelihood of causing loss of CLN6 function were found in 21% of cases and made up 33% of all distinct variants. Forty-four percent of variants were classified as pathogenic or likely pathogenic. CONCLUSIONS: Our study significantly expands the number of published clinical cases and the mutational spectrum of disease-associated CLN6 variants, especially for the Middle Eastern and North African regions. We confirm previous observations regarding the most prevalent symptoms and recommend including CLN6 in the genetic diagnosis of patients presenting with early-onset abnormalities of the nervous system, musculoskeletal system, and eye.


Subject(s)
Myoclonic Epilepsies, Progressive , Neuronal Ceroid-Lipofuscinoses , Adolescent , Female , Humans , Male , Membrane Proteins/genetics , Mutation/genetics , Neuronal Ceroid-Lipofuscinoses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...