Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(10): 113296, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858467

ABSTRACT

Episodic memory requires the hippocampus and prefrontal cortex to guide decisions by representing events in spatial, temporal, and personal contexts. Both brain regions have been described by cognitive theories that represent events in context as locations in maps or memory spaces. We query whether ensemble spiking in these regions described spatial structures as rats performed memory tasks. From each ensemble, we construct a state-space with each point defined by the coordinated spiking of single and pairs of units in 125-ms bins and investigate how state-space locations discriminate task features. Trajectories through state-spaces correspond with behavioral episodes framed by spatial, temporal, and internal contexts. Both hippocampal and prefrontal ensembles distinguish maze locations, task intervals, and goals by distances between state-space locations, consistent with cognitive mapping and relational memory space theories of episodic memory. Prefrontal modulation of hippocampal activity may guide choices by directing memory representations toward appropriate state-space goal locations.


Subject(s)
Hippocampus , Memory, Episodic , Rats , Animals , Brain , Prefrontal Cortex
2.
Front Syst Neurosci ; 16: 869705, 2022.
Article in English | MEDLINE | ID: mdl-35615425

ABSTRACT

Audiovisual perception results from the interaction between visual and auditory processing. Hence, presenting auditory and visual inputs simultaneously usually improves the accuracy of the unimodal percepts, but can also lead to audiovisual illusions. Cross-talks between visual and auditory inputs during sensory processing were recently shown to occur as early as in the primary visual cortex (V1). In a previous study, we demonstrated that sounds improve the representation of the orientation of visual stimuli in the naïve mouse V1 by promoting the recruitment of neurons better tuned to the orientation and direction of the visual stimulus. However, we did not test if this type of modulation was still present when the auditory and visual stimuli were both behaviorally relevant. To determine the effect of sounds on active visual processing, we performed calcium imaging in V1 while mice were performing an audiovisual task. We then compared the representations of the task stimuli orientations in the unimodal visual and audiovisual context using shallow neural networks (SNNs). SNNs were chosen because of the biological plausibility of their computational structure and the possibility of identifying post hoc the biological neurons having the strongest influence on the classification decision. We first showed that SNNs can categorize the activity of V1 neurons evoked by drifting gratings of 12 different orientations. Then, we demonstrated using the connection weight approach that SNN training assigns the largest computational weight to the V1 neurons having the best orientation and direction selectivity. Finally, we showed that it is possible to use SNNs to determine how V1 neurons represent the orientations of stimuli that do not belong to the set of orientations used for SNN training. Once the SNN approach was established, we replicated the previous finding that sounds improve orientation representation in the V1 of naïve mice. Then, we showed that, in mice performing an audiovisual detection task, task tones improve the representation of the visual cues associated with the reward while deteriorating the representation of non-rewarded cues. Altogether, our results suggest that the direction of sound modulation in V1 depends on the behavioral relevance of the visual cue.

3.
Neurosci Biobehav Rev ; 94: 238-247, 2018 11.
Article in English | MEDLINE | ID: mdl-30227142

ABSTRACT

What any sensory neuron knows about the world is one of the cardinal questions in Neuroscience. Information from the sensory periphery travels across synaptically coupled neurons as each neuron encodes information by varying the rate and timing of its action potentials (spikes). Spatiotemporally correlated changes in this spiking regimen across neuronal populations are the neural basis of sensory representations. In the somatosensory cortex, however, spiking of individual (or pairs of) cortical neurons is only minimally informative about the world. Recent studies showed that one solution neurons implement to counteract this information loss is adapting their rate of information transfer to the ongoing synaptic activity by changing the membrane potential at which spike is generated. Here we first introduce the principles of information flow from the sensory periphery to the primary sensory cortex in a model sensory (whisker) system, and subsequently discuss how the adaptive spike threshold gates the intracellular information transfer from the somatic post-synaptic potential to action potentials, controlling the information content of communication across somatosensory cortical neurons.


Subject(s)
Action Potentials , Neurons/physiology , Perception/physiology , Somatosensory Cortex/physiology , Animals , Cell Communication , Information Theory , Vibrissae/physiology
4.
Cereb Cortex ; 25(3): 563-77, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24062318

ABSTRACT

In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding.


Subject(s)
Action Potentials , Models, Neurological , Posterior Thalamic Nuclei/physiology , Somatosensory Cortex/physiology , Space Perception/physiology , Touch/physiology , Ventral Thalamic Nuclei/physiology , Animals , Male , Neural Pathways/physiology , Physical Stimulation , Rats , Rats, Wistar , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...