Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.864
Filter
1.
Cell Rep ; 43(8): 114567, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097927

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure histories become increasingly complex through original and variant-adapted vaccines and infections with viral variants. Upon exposure to the highly altered Omicron spike glycoprotein, pre-immunized individuals predominantly mount recall responses of Wuhan-Hu-1 (wild-type)-imprinted memory B (BMEM) cells mostly targeting conserved non-neutralizing epitopes, leading to diminished Omicron neutralization. We investigated the impact of imprinting in individuals double/triple vaccinated with a wild-type-strain-based mRNA vaccine who, thereafter, had two consecutive exposures to Omicron BA.1 spike (breakthrough infection followed by BA.1-adapted vaccine). We found that depletion of conserved epitope-recognizing antibodies using a wild-type spike bait results in strongly diminished BA.1 neutralization. Furthermore, spike-specific BMEM cells recognizing conserved epitopes are much more prevalent than BA.1-specific BMEM cells. Our observations suggest that imprinted BMEM cell recall responses limit the induction of strain-specific responses even after two consecutive BA.1 spike exposures. Vaccine adaptation strategies need to consider that prior SARS-CoV-2 infections and vaccinations may cause persistent immune imprinting.

2.
Int J Infect Dis ; : 107173, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094762

ABSTRACT

OBJECTIVES: We studied the immunogenicity after primary and booster vaccinations of Abdala COVID-19 vaccine, a receptor binding domain protein subunit vaccine, in Vietnamese people by determining the level of neutralization and cross-neutralization activities against the ancestral SARS-CoV-2 and its variants, and SARS-CoV-1. METHODS: We performed a prospective observational study, enrolling adults aged 19-59 years in Dong Thap province, southern Vietnam, and collected blood samples from baseline until 4 weeks post booster dose. We measured anti-nucleocapsid, anti-spike and neutralizing antibodies against SARS-CoV-2, and assessed the cross-neutralization against 14 SARS-CoV-2 variants, and SARS-CoV-1. Complementary antibody data came from Vietnamese healthcare workers fully vaccinated with ChAdOx1-S. RESULTS: After primary vaccination, anti-spike antibody and neutralizing antibodies were detectable in 98.4% and 87% of 251 study participants, respectively, with neutralizing antibody titers similar to that induced by ChAdOx1-S vaccine. Antibody responses after a homologous (Abdala COVID-19) or heterologous (mRNA BNT162b2) booster could neutralize 14 SARS-CoV-2 variants (including Omicron), and SARS-CoV-1. CONCLUSIONS: Abdala COVID-19 vaccine is immunogenic in Vietnamese people. Enhanced antibody response after a booster dose could cross-neutralize 14 SARS-CoV-2 variants and SARS-CoV-1. Our results have added to the growing body of knowledge about the contribution of protein subunit vaccine platforms to pandemic control.

3.
Emerg Microbes Infect ; : 2389095, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101691

ABSTRACT

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.

4.
BMC Vet Res ; 20(1): 301, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971791

ABSTRACT

BACKGROUND: Foot-and-mouth disease (FMD) is a devastating disease affecting cloven-hoofed animals, that leads to significant economic losses in affected countries and regions. Currently, there is an evident inclination towards the utilization of nanoparticles as powerful platforms for innovative vaccine development. Therefore, this study developed a ferritin-based nanoparticle (FNP) vaccine that displays a neutralizing epitope of foot-and-mouth disease virus (FMDV) VP1 (aa 140-158) on the surface of FNP, and evaluated the immunogenicity and protective efficacy of these FNPs in mouse and guinea pig models to provide a strategy for developing potential FMD vaccines. RESULTS: This study expressed the recombinant proteins Hpf, HPF-NE and HPF-T34E via an E. coli expression system. The results showed that the recombinant proteins Hpf, Hpf-NE and Hpf-T34E could be effectively assembled into nanoparticles. Subsequently, we evaluated the immunogenicity of the Hpf, Hpf-NE and Hpf-T34E proteins in mice, as well as the immunogenicity and protectiveness of the Hpf-T34E protein in guinea pigs. The results of the mouse experiment showed that the immune efficacy in the Hpf-T34E group was greater than the Hpf-NE group. The results from guinea pigs immunized with Hpf-T34E showed that the immune efficacy was largely consistent with the immunogenicity of the FMD inactivated vaccine (IV) and could confer partial protection against FMDV challenge in guinea pigs. CONCLUSIONS: The Hpf-T34E nanoparticles stand out as a superior choice for a subunit vaccine candidate against FMD, offering effective protection in FMDV-infected model animals. FNP-based vaccines exhibit excellent safety and immunogenicity, thus representing a promising strategy for the continued development of highly efficient and safe FMD vaccines.


Subject(s)
Epitopes , Ferritins , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Nanoparticles , Viral Vaccines , Animals , Guinea Pigs , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus/immunology , Ferritins/immunology , Viral Vaccines/immunology , Epitopes/immunology , Mice , Female , Mice, Inbred BALB C , Recombinant Proteins/immunology , Capsid Proteins
5.
Open Forum Infect Dis ; 11(7): ofae329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975246

ABSTRACT

Background: In 2017, a mumps outbreak occurred in a US military barracks. Serum collected at service entry was used to compare pre-exposure with presumptive vaccine-induced antibody levels from persons who developed mumps (cases) and potentially exposed persons who did not develop mumps (non-cases). Sufficient information to determine levels of exposure during the outbreak was not available. Methods: Pre-outbreak serum samples from the Department of Defense Serum Repository were available from 254 potentially exposed service members. Twelve developed clinical symptoms and had post-outbreak serum collected. All sera were tested with a mumps-specific enzyme immunoassay for immunoglobulin M, immunoglobulin G (IgG), and IgG avidity. The neutralizing antibodies to vaccine strain (Jeryl Lynn [JL], genotype A) and wildtype virus (genotype G) was assessed by a plaque reduction neutralization test. A Fisher exact test and receiver operator characteristic curve were used to analyze the antibody response for non-cases and mumps cases. Results: Eight mumps cases were laboratory confirmed. Pre-outbreak neutralizing antibody titers to JL and genotype G mumps virus and pre-outbreak IgG index values were proportionately lower for most cases as compared with exposed non-cases. When compared with potentially exposed non-cases, cases with clinical symptoms had greater odds of having a pre-outbreak JL titer <41 and a genotype G titer <16. Conclusions: We identified potential correlates of protection for mumps neutralizing antibody titers against JL and genotype G mumps viruses.

6.
J Med Virol ; 96(7): e29780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965887

ABSTRACT

Human adenovirus (HAdV) infections present diverse clinical manifestations upon infecting individuals, with respiratory infections predominating in children. We surveyed pediatric hospitalizations due to respiratory HAdV infections across 18 hospitals in Hokkaido Prefecture, Japan, from July 2019 to March 2024, recording 473 admissions. While hospitalizations remained below five cases per week from July 2019 to September 2023, a notable surge occurred in late October 2023, with weekly admissions peaking at 15-20 cases from November to December. There were dramatic shifts in the age distribution of hospitalized patients: during 2019-2021, 1-year-old infants and children aged 3-6 years represented 51.4%-54.8% and 4.1%-13.3%, respectively; however, in 2023-2024, while 1-year-old infants represented 19.0%-20.1%, the proportion of children aged 3-6 years increased to 46.2%-50.0%. Understanding the emergence of significant outbreaks of respiratory HAdV infections and the substantial changes in the age distribution of hospitalized cases necessitates further investigation into the circulating types of HAdV in Hokkaido Prefecture and changes in children's neutralizing antibody titers against HAdV.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Disease Outbreaks , Hospitalization , Respiratory Tract Infections , Humans , Japan/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Adenoviruses, Human/isolation & purification , Adenoviruses, Human/classification , Male , Female , Hospitalization/statistics & numerical data , Infant
7.
Med ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39025066

ABSTRACT

BACKGROUND: ABO1020 is a monovalent COVID-19 mRNA vaccine. Results from a phase 1 trial showed ABO1020 was safe and well tolerated, and phase 3 trials to evaluate the efficacy, immunogenicity, and safety of ABO1020 in healthy adults are urgently needed. METHODS: We conducted a multinational, randomized, placebo-controlled, double-blind, phase 3 trial among healthy adults (ClinicalTrials.gov: NCT05636319). Participants were randomly assigned (1:1) to receive either 2 doses of ABO1020 (15 µg per dose) or placebo, administered 28 days apart. The primary endpoint was the vaccine efficacy in preventing symptomatic COVID-19 cases that occurred at least 14 days post-full vaccination. The second endpoint included the neutralizing antibody titers against Omicron BA.5 and XBB and safety assessments. FINDINGS: A total of 14,138 participants were randomly assigned to receive either vaccine or placebo (7,069 participants in each group). A total of 366 symptomatic COVID-19 cases were confirmed 14 days after the second dose among 93 participants in the ABO1020 group and 273 participants in the placebo group, yielding a vaccine efficacy of 66.18% (95% confidence interval: 57.21-73.27, p < 0.0001). A single dose or two doses of ABO1020 elicited potent neutralizing antibodies against both BA.5 and XBB.1.5. The safety profile of ABO1020 was characterized by transient, mild-to-moderate fever, pain at the injection site, and headache. CONCLUSION: ABO1020 was well tolerated and conferred 66.18% protection against symptomatic COVID-19 in adults. FUNDING: National Key Research and Development Project of China, Innovation Fund for Medical Sciences from the CAMS, National Natural Science Foundation of China.

8.
Vaccine ; : 126146, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39033078

ABSTRACT

At present, mRNA-based vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being administered on a global scale. While the efficacy of mRNA vaccines has been demonstrated, several unknowns remains. For example, as the number of booster vaccinations increases, there are uncertainties regarding how long effects of a vaccine will last and how much individual variability exists. In this study, to predict the duration of vaccine efficacy, we modeled the kinetics of antibody levels for each SARS-CoV-2 vaccination dose, incorporating predictive intervals to estimate the duration of vaccine efficacy and to account for variability among individuals. A total of 3,059 serum samples from 1,346 participants were assayed to quantify IgG antibodies specific for the S1 subunit of the S protein (anti-S1 IgG) and neutralizing antibody activities against SARS-CoV-2. A power law model was used to simulate the decay of antibody titers following vaccination, and models were constructed to assess antibody level kinetics after the second, third, fourth, and fifth vaccinations. The models assumed that booster vaccinations would significantly reduce the decline in anti-S antibody and neutralizing antibody levels, resulting in levels being maintained for a longer period. No significant differences in the decay rate of antibody levels were observed among age groups, yet the peak titers of antibody levels were significantly higher in the ≤ 39 age group than in the ≥ 60 age group following the second vaccination; these differences were not observed after the third and fourth vaccinations. The modeling of antibody level kinetics after vaccination is considered to be useful for understanding the immune status of mRNA vaccine recipients.

9.
Hum Antibodies ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39031351

ABSTRACT

BACKGROUND: Information regarding seropositivity and vaccine efficacy among medical students is scarce. This study aims to detect the status of SARS-CoV-2 neutralizing antibodies among the Sinopharm's Vero Cell (BBIBP-CorV) vaccinated medical students. MATERIALS AND METHODS: A prospective, cross-sectional study was carried out among medical students of Gandaki Medical College Teaching Hospital, Pokhara, Nepal from March through August 2022. The level of SARS-CoV-2 serum- neutralizing IgG antibody was measured and its relation with participants' age and sex, duration of vaccination, and any comorbid condition was determined. RESULTS: A total of 110 medical students were included in the final analysis, the majority being females (65.5%) and the mean age is 23.1 ± 3.2 years. Most of the students (96.4%) had neutralizing antibodies against SARS-CoV-2. Among the 29 (26.36%) students who received a booster dose, the positivity rate was 100%. The mean IgG levels were 9.57 ± 9.58 µg/ml and 2.91 ± 2.47 µg/ml among students receiving an additional booster dose and among those not receiving it, respectively. In the cohort receiving a booster dose of the vaccine, the average value of neutralizing IgG antibodies was high. In contrast, the ones not receiving it, the titers were low and showed a declining trend. CONCLUSION: Though the dose strategy of the Sinopharm vaccine is effective, booster vaccination may be an important strategy to ensure protection among medical students, who are at high risk of COVID-19 due to constant patient exposure during their training. Further studies should assess vaccine efficacy among individuals who received other vaccines as well.

10.
Immun Inflamm Dis ; 12(7): e1353, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39056544

ABSTRACT

BACKGROUND: SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS: The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS: The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS: The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION: Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION: These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Recombinant Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Mice , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , HEK293 Cells , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Mice, Inbred BALB C , Female , Protein Multimerization , Protein Domains/immunology , Protein Binding
11.
Vaccines (Basel) ; 12(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39066390

ABSTRACT

Background: We aimed to identify the risk factors for impaired cellular and humoral immunity after three doses of the SARS-CoV-2 vaccine. Methods: Six months after the third vaccine dose, T-cell immunity was evaluated using interferon-gamma release assays (IGRAs) in 60 healthy and 139 immunocompromised (IC) individuals, including patients with hematologic malignancy (HM), solid malignancy (SM), rheumatic disease (RD), and kidney transplantation (KT). Neutralizing antibody titers were measured using the plaque reduction neutralization test (PRNT) and surrogate virus neutralization test (sVNT). Results: T-cell immunity results showed that the percentages of IGRA-positive results using wild-type/alpha spike protein (SP) and beta/gamma SP were 85% (51/60) and 75% (45/60), respectively, in healthy individuals and 45.6% (62/136) and 40.4% (55/136), respectively, in IC individuals. IC with SM or KT showed a high percentage of IGRA-negative results. The underlying disease poses a risk for impaired cellular immune response to wild-type SP. The risk was low when all doses were administered as mRNA vaccines. The risk factors for an impaired cellular immune response to beta/gamma SP were underlying disease and monocyte%. In the sVNT using wild-type SP, 12 of 191 (6.3%) individuals tested negative. In the PRNT of 46 random samples, 6 (13%) individuals tested negative for the wild-type virus, and 19 (41.3%) tested negative with omicrons. KT poses a risk for an impaired humoral immune response. Conclusions: Underlying disease poses a risk for impaired cellular immune response after the third dose of the SARS-CoV-2 vaccine; KT poses a risk for impaired humoral immune response, emphasizing the requirement of precautions in patients.

12.
Travel Med Infect Dis ; 60: 102735, 2024.
Article in English | MEDLINE | ID: mdl-38992484

ABSTRACT

BACKGROUND: The 4-dose Essen intramuscular (IM) regimen for rabies post-exposure prophylaxis (PEP) has been recommended by Advisory Committee on Immunization Practices (ACIP) and World Health Organization (WHO), but the large-sample clinical evidence is still limited. METHOD: Rabies virus neutralizing antibodies of 11,752 patients were detected from 409 rabies prevention clinics in 27 provinces in China. Patients with serum collected before or no later than 1 h after injection on the day of the fifth dose (day 28) of 5-dose Essen regimen were included in Group A to observe the immune efficacy of 4-dose Essen IM regimen, and patients with serum collected 14-28 days after injection of the fifth dose were included in Group B to observe the immune efficacy of 5-dose Essen IM regimen. RESULTS: Finally, 2351 cases met the inclusion and exclusion criteria, including 2244 cases in Group A and 107 cases in Group B. The antibody titer of Group A was higher than that of Group B [12.21 (4.15, 32.10) IU/ml vs. 9.41 (3.87, 27.38) IU/ml] (P = 0.002). In Group A, the median antibody titers were 4.01IU/ml, 11.63IU/ml and 29.46IU/ml in patients vaccinated with purified hamster kidney cell vaccine (PHKCV), purified Vero cell vaccine (PVRV), and human diploid cell rabies vaccine (HDCV), respectively, with statistical significance (P < 0.001). CONCLUSIONS: The 4-dose Essen IM regimen could provide satisfactory immune effect, and HDCV induced higher antibody titer than PHKCV or PVRV.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Post-Exposure Prophylaxis , Rabies Vaccines , Rabies , Humans , Rabies/prevention & control , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Post-Exposure Prophylaxis/methods , China , Male , Injections, Intramuscular , Adult , Female , Antibodies, Viral/blood , Cross-Sectional Studies , Middle Aged , Antibodies, Neutralizing/blood , Rabies virus/immunology , Adolescent , Young Adult , Animals , Child , Immunogenicity, Vaccine , Immunization Schedule
13.
Am J Transplant ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996969

ABSTRACT

Reactivation of BK polyomavirus (BKPyV) can cause significant kidney and bladder disease in immunocompromised patients. There are currently no effective, BKPyV-specific therapies. MAU868 is a novel, human immunoglobulin (Ig) G1 monoclonal antibody that binds the major capsid protein, VP1, of BKPyV with picomolar affinity, neutralizes infection by the 4 major BKPyV genotypes (EC50 ranging from 0.009-0.093 µg/mL; EC90 ranging from 0.102-4.160 µg/mL), and has comparable activity against variants with highly prevalent VP1 polymorphisms. No resistance-associated variants were identified in long-term selection studies, indicating a high in vitro barrier-to-resistance. The high-resolution crystal structure of MAU868 in complex with VP1 pentamer identified 3 key contact residues in VP1 (Y169, R170, and K172). A first-in-human study was conducted to assess the safety, tolerability, and pharmacokinetics of MAU868 following intravenous and subcutaneous administration to healthy adults in a randomized, placebo-controlled, double-blinded, single ascending dose design. MAU868 was safe and well-tolerated. All adverse events were grade 1 and resolved. The pharmacokinetics of MAU868 was typical of a human IgG, with dose-proportional systemic exposure and an elimination half-life ranging between 23 and 30 days. These results demonstrate the potential of MAU868 as a first-in-class therapeutic agent for the treatment or prevention of BKPyV disease.

14.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026699

ABSTRACT

Broadly neutralizing antibodies (bNAbs) have shown great promise for prevention and treatment of HIV infection. Breadth of bNAb neutralization, measured in vitro across panels of diverse viral isolates, is often used as a predictor of clinical potential. However, recent prevention studies demonstrate that the clinical efficacy of a broad and potent bNAb (VRC01) is undermined by neutralization resistance of circulating strains. Using HIV-infected humanized mice, we find that therapeutic efficacy of bNAbs delivered as Vectored ImmunoTherapy (VIT) is a function of both the fitness cost and resistance benefit of mutations that emerge during viral escape, which we term 'escapability'. Applying this mechanistic framework, we find that the sequence of the envelope V5-loop alters the resistance benefits of mutants that arise during escape, thereby impacting the therapeutic efficacy of VIT-mediated viral suppression. We also find that an emtricitabine-based antiretroviral drug regimen dramatically enhances the efficacy of VIT, by reducing the fitness of mutants along the escape path. Our findings demonstrate that bNAb escapability is a key determinant to consider in the rational design of antibody regimens with maximal efficacy and illustrates a tractable means of minimizing viral escape from existing bNAbs.

15.
J Infect Dis ; 230(1): 28-37, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052730

ABSTRACT

Regulatory T (Treg) cells are involved in the antiviral immune response in patients with coronavirus disease 2019 (COVID-19); however, whether Treg cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of Treg cells and lower frequencies of CXCR3+ circulating T follicular helper (cTfh) cells than healthy controls. Furthermore, the frequencies of Treg and CXCR3+ cTfh cells were negatively and positively correlated with the nAb responses, respectively, and Treg cells was inversely associated with CXCR3+ cTfh cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, Treg cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTfh cells, especially CXCR3+ cTfh cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits concerted nAb responses, which are shaped by both Treg and Tfh cells.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Receptors, CXCR3 , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Adult , Aged , Female , Humans , Male , Middle Aged , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Memory B Cells/immunology , Receptors, CXCR3/metabolism , Receptors, CXCR3/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology
16.
AAPS J ; 26(4): 80, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992280

ABSTRACT

Immunogenicity testing and characterization is an important part of understanding the immune response to administration of a protein therapeutic. Neutralizing antibody (NAb) assays are used to characterize a positive anti-drug antibody (ADA) response. Harmonization of reporting of NAb assay performance and results enables efficient communication and expedient review by industry and health authorities. Herein, a cross-industry group of NAb assay experts have harmonized NAb assay reporting recommendations and provided a bioanalytical report (BAR) submission editable template developed to facilitate agency filings. This document addresses key bioanalytical reporting gaps and provides a report structure for documenting clinical NAb assay performance and results. This publication focuses on the content and presentation of the NAb sample analysis report including essential elements such as the method, critical reagents and equipment, data analysis, study samples, and results. The interpretation of immunogenicity data, including the evaluation of the impact of NAb on safety, exposure, and efficacy, is out of scope of this publication.


Subject(s)
Antibodies, Neutralizing , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans
17.
J Bone Miner Res ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982734

ABSTRACT

Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by low bone mass and frequent fractures. Children with OI are commonly treated with bisphosphonates to reduce fracture rate, but treatment options for adults are limited. In the Phase 2b ASTEROID trial, setrusumab (a sclerostin neutralizing antibody, SclAb) improved bone density and strength in adults with type I, III and IV OI. Here, we investigate bone matrix material properties in tetracycline-labeled trans-iliac biopsies from three groups: i) control: individuals with no metabolic bone disease, ii) OI: individuals with OI, iii) SclAb-OI: individuals with OI after six months of setrusumab treatment (as part of the ASTEROID trial). In addition to bone histomorphometry, bone mineral and matrix properties were evaluated with nanoindentation, Raman spectroscopy, second harmonic generation imaging, quantitative backscatter electron imaging, and small-angle x-ray scattering. Spatial locations of fluorochrome labels were identified to differentiate inter-label bone of the same tissue age and intra-cortical bone. No difference in collagen orientation was found between the groups. The bone mineral density distribution and analysis of Raman spectra indicate that OI groups have greater mean mineralization, greater relative mineral content, and lower crystallinity than the control group, which was not altered by SclAb treatment. Finally, a lower modulus and hardness were measured in the inter-label bone of the OI-SclAb group compared to the OI group. Previous studies suggest that even though bone from OI has a higher mineral content, the ECM has comparable mechanical properties. Therefore, fragility in OI may stem from contributions from other yet unexplored aspects of bone organization at higher length scales. We conclude that SclAb treatment leads to increased bone mass while not adversely affecting bone matrix properties in individuals with OI.


Individuals with osteogenesis imperfecta (OI), also known as "brittle bone disease," have low bone mass and frequent fractures. Low bone mass occurs due to an imbalance between cells that remove bone and cells that form bone. Pharmaceutical treatments that block removal of bone lead to reduced fracture rates in children with OI. Effective treatment options for adults are limited. Setrusumab is a drug that leads to increased bone mass and strength in adults with OI. Here, we investigate whether Setrusumab alters the bone material in addition to improving bone mass. Three groups are compared: individuals with OI treated with Setrusumab, individuals with OI not treated with Setrusumab, and individuals without OI. A lower modulus and hardness were measured with nanoindentation in the Setrusumab-treated group. However, we did not find any changes in the bone's multi-scale structure. Fragility in OI may stem from other yet unexplored aspects of bone organization. We conclude that Setrusumab treatment leads to increased bone mass while not adversely affecting bone material properties in individuals with OI.

18.
Protein Sci ; 33(8): e5109, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989563

ABSTRACT

Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride toward achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.


Subject(s)
Angiotensin-Converting Enzyme 2 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Humans , Binding Sites , COVID-19/virology , COVID-19/genetics , Protein Binding , Artificial Intelligence
19.
JMIR Public Health Surveill ; 10: e49812, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39012087

ABSTRACT

Background: With the emergence of SARS-CoV-2 variants that have eluded immunity from vaccines and prior infections, vaccine shortages and vaccine effectiveness pose unprecedented challenges for governments in expanding booster vaccination programs. The fractionation of vaccine doses might be an effective strategy for helping society to face these challenges, as fractional doses may have efficacies comparable with those of the standard doses. Objective: This study aims to investigate the relationship between vaccine immunogenicity and protection and to project efficacies of fractional doses of vaccines for COVID-19 by using neutralizing antibody levels. Methods: In this study, we analyzed the relationship between in vitro neutralization levels and the observed efficacies against both asymptomatic infection and symptomatic infection, using data from 13 studies of 10 COVID-19 vaccines and from convalescent cohorts. We further projected efficacies for fractional doses, using neutralization as an intermediate variable, based on immunogenicity data from 51 studies included in our systematic review. Results: In comparisons with the convalescent level, vaccine efficacy against asymptomatic infection and symptomatic infection increased from 8.8% (95% CI 1.4%-16.1%) to 71.8% (95% CI 63%-80.7%) and from 33.6% (95% CI 23.6%-43.6%) to 98.6% (95% CI 97.6%-99.7%), respectively, as the mean neutralization level increased from 0.1 to 10 folds of the convalescent level. Additionally, mRNA vaccines provided the strongest protection, which decreased slowly for fractional dosing with dosages between 50% and 100% of the standard dose. We also observed that although vaccine efficacy increased with the mean neutralization level, the rate of this increase was slower for vaccine efficacy against asymptomatic infection than for vaccine efficacy against symptomatic infection. Conclusions: Our results are consistent with studies on immune protection from SARS-CoV-2 infection. Based on our study, we expect that fractional-dose vaccination could provide partial immunity against SARS-CoV-2 and its variants. Our findings provide a theoretical basis for the efficacy of fractional-dose vaccines, serving as reference evidence for implementing fractional dosing vaccine policies in areas facing vaccine shortages and thereby mitigating disease burden. Fractional-dose vaccination could be a viable vaccination strategy comparable to full-dose vaccination and deserves further exploration.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , Humans , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Antibodies, Neutralizing/blood , COVID-19/prevention & control , Vaccine Efficacy/statistics & numerical data , SARS-CoV-2/immunology , Immunogenicity, Vaccine , Antibodies, Viral/blood
20.
Virus Res ; 347: 199437, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002567

ABSTRACT

The global monkeypox virus (MPXV) outbreak in 2022 emphasizes the urgent need for effective and accessible new-generation vaccines and neutralizing antibodies. Herein, we identified MPXV-neutralizing antibodies using high-throughput single-cell RNA and V(D)J sequencing of antigen-sorted B cells from patients with convalescent monkeypox. IgG1-expressing B cells were obtained from 34 paired heavy- and light-chain B cell receptor sequences. Subsequently, three potent neutralizing antibodies, MV127, MV128, and MV129, were identified and reacted with the MPXV A35 protein. Among these, MV129, which has a half-maximal inhibitory concentration of 2.68µg/mL against authentic MPXV, was considered to be the putative candidates for MPXV neutralization in response to monkeypox disease.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , B-Lymphocytes , High-Throughput Nucleotide Sequencing , Monkeypox virus , Mpox (monkeypox) , Antibodies, Neutralizing/immunology , Humans , Antibodies, Viral/immunology , Monkeypox virus/immunology , Monkeypox virus/genetics , Mpox (monkeypox)/immunology , Mpox (monkeypox)/virology , B-Lymphocytes/immunology , Immunoglobulin G/immunology , Female , Male , Adult , Neutralization Tests , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL