Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 32(40)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34186516

ABSTRACT

The present study was aimed to develop nitrogen-doped nanostructured ZnO thin films. These films were produced in a sequential procedure involving the atomic layer deposition technique, and a hydrothermal process supported by microwave heating. Employing the atomic layer deposition technique, through self-limited reactions of diethylzinc (DEZn) and H2O, carried out at 3.29 × 10-4atm and 190 °C, a high-quality ZnO seed was grown on a Si (100) substrate, producing a textured film. In a second stage, columnar ZnO nanostructures were grown perpendicularly oriented to the silicon substrate on those films, using a solvothermal process in a microwave heating facility, employing Zn(NO3)2as zinc precursor, while hexamethylenetetramine (HMTA) was used to produce the bridging of Zn2+ions. The consequence of N-doping concentration on the physicochemical properties of ZnO thin films was studied. The manufactured films were structurally analyzed by scanning electron microscopy and x-ray diffraction. Also, x-ray photoelectron spectroscopy, Raman, and UV-vis spectroscopies were used to provide further insight on the effect of nitrogen doping. The N-doped films displayed textured wurtzite-like structures that changes their preferential growth from the (002) to the (100) crystallographic plane, apparently promoted by the increase of nitrogen precursor. It is also shown that nitrogen-doped films undergo a reduction in their bandgap, compared to ZnO. The methodology presented here provides a viable way to perform high-quality N-ZnO nanostructured thin films.

2.
Environ Sci Pollut Res Int ; 24(5): 4613-4624, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27966080

ABSTRACT

In this study, the photocatalytic removal of an emerging contaminant, diclofenac (DCF) sodium, was performed using the nitrogen-doped WO3/TiO2-coupled oxide catalyst (WO3/TiO2-N). The catalyst synthesis was accomplished by a sol-gel method using tetrabutyl orthotitanate (C16H36O4Ti), ammonium p-tungstate [(NH4)10H2W12O42·4H2O] and ammonium nitrate (NH4NO3) as the nitrogen source. For comparison, TiO2 and WO3/TiO2 were also prepared under similar conditions. Analysis by X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the synthesized materials. The photocatalytic efficiency of the semiconductors was determined in a batch reactor irradiated with simulated solar light. Residual and mineralized DCF were quantified by high-performance liquid chromatography, total organic carbon analysis and ion exchange chromatography. The results indicated that the tungsten atoms were dispersed on the surface of TiO2 as WO3. The partial substitution of oxygen by nitrogen atoms into the lattice of TiO2 was an important factor to improve the photocatalytic efficiency of WO3/TiO2. Therefore, the best photocatalytic activity was obtained with the WO3/TiO2-N0.18 catalyst, reaching 100% DCF transformation at 250 kJ m-2 and complete mineralization at 400 kJ m-2 of solar-accumulated energy.


Subject(s)
Diclofenac/chemistry , Nitrogen/chemistry , Titanium/chemistry , Adsorption , Catalysis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oxides , Photochemical Processes , Photoelectron Spectroscopy , Tungsten , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL