Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomolecules ; 13(5)2023 05 18.
Article in English | MEDLINE | ID: mdl-37238729

ABSTRACT

This study conducted transcriptome sequencing of goat-mammary-gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages to reveal the expression characteristics and molecular functions of circRNAs during mammary involution. A total of 11,756 circRNAs were identified in this study, of which 2528 circRNAs were expressed in all three stages. The number of exonic circRNAs was the largest, and the least identified circRNAs were antisense circRNAs. circRNA source gene analysis found that 9282 circRNAs were derived from 3889 genes, and 127 circRNAs' source genes were unknown. Gene Ontology (GO) terms, such as histone modification, regulation of GTPase activity, and establishment or maintenance of cell polarity, were significantly enriched (FDR < 0.05), which indicates the functional diversity of circRNAs' source genes. A total of 218 differentially expressed circRNAs were identified during the non-lactation period. The number of specifically expressed circRNAs was the highest in the DP and the lowest in LL stages. These indicated temporal specificity of circRNA expression in mammary gland tissues at different developmental stages. In addition, this study also constructed circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks related to mammary development, immunity, substance metabolism, and apoptosis. These findings help understand the regulatory role of circRNAs in mammary cell involution and remodeling.


Subject(s)
MicroRNAs , RNA, Circular , Female , Pregnancy , Animals , RNA, Circular/genetics , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Lactation/genetics , Goats/genetics , Goats/metabolism , Gene Regulatory Networks
2.
Front Genet ; 11: 472, 2020.
Article in English | MEDLINE | ID: mdl-32508880

ABSTRACT

Small-Tailed Han (STH) sheep are known for their high fecundity, but the survival of lambs is compromised and influences the commercial return from farming these sheep, with this being attributed in part to starvation from insufficient milk production by the ewes. In this study, the transcriptome profiles of the mammary gland of lactating and non-lactating STH ewes were investigated using paired-end RNA sequencing (RNA-Seq). An average of 14,447 genes were found to be expressed at peak-lactation in the STH sheep, while 15,146 genes were expressed in non-lactating ewes. A total of 4,003 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEGs were associated with a wide range of cellular components, biological processes and metabolic pathways, including binding activities, signaling pathways, cellular structures, and immune responses. The most highly expressed genes at peak-lactation included CSN2, LGB, LALBA, CSN1S1, CSN1S2, and CSN3, and the 10 most highly expressed genes accounted for 61.37% of the total Reads Per Kilobase of transcript, per Million mapped reads (RPKM). The most highly expressed genes in the mammary gland of non-lactating ewes included IgG, THYMB4X, EEF1A1, IgA, and APOE, and the 10 most highly expressed genes accounted for only 12.97% of the total gene RPKM values. This suggests that the sheep mammary gland undergoes a substantial development in milk protein synthesis infrastructure and promotion of protein transportation during lactation.

SELECTION OF CITATIONS
SEARCH DETAIL