Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 14(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456655

ABSTRACT

Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.

2.
J Gene Med ; 24(4): e3410, 2022 04.
Article in English | MEDLINE | ID: mdl-35032067

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-l-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS: Liposomes were prepared by microfluidization, and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS: Monodisperse mucoadhesive complexes around 110 nm, which are able to efficiently permeate the PNM. In animals, the treatment led to a modest increase in IDUA activity in the lung, heart, and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues, and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION: Nonviral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly for other neurological disorders.


Subject(s)
Mucopolysaccharidosis I , Animals , Brain/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Iduronidase/genetics , Iduronidase/metabolism , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL