Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Braz. J. Biol. ; 83: 1-15, 2023. tab, ilus, graf
Article in English | VETINDEX | ID: vti-765398

ABSTRACT

Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T. cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.(AU)


O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T. cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.(AU)


Subject(s)
Animals , DNA Damage , Trypanosoma cruzi/genetics , Crosses, Genetic , Gene Expression
2.
Braz. j. biol ; 83: 1-15, 2023. tab, ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468821

ABSTRACT

Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T. cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T. cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.


Subject(s)
Animals , Crosses, Genetic , DNA Damage , Gene Expression , Trypanosoma cruzi/genetics
3.
Braz. j. biol ; 83: e243910, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278525

ABSTRACT

Abstract Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T.cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


Resumo O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T.cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.


Subject(s)
Humans , Animals , Trypanosoma cruzi/genetics , Xeroderma Pigmentosum , DNA Damage/genetics , Computational Biology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Repair/genetics
4.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469037

ABSTRACT

Abstract Nucleotide excision repair (NER) acts repairing damages in DNA, such as lesions caused by cisplatin. Xeroderma Pigmentosum complementation group C (XPC) protein is involved in recognition of global genome DNA damages during NER (GG-NER) and it has been studied in different organisms due to its importance in other cellular processes. In this work, we studied NER proteins in Trypanosoma cruzi and Trypanosoma evansi, parasites of humans and animals respectively. We performed three-dimensional models of XPC proteins from T. cruzi and T. evansi and observed few structural differences between these proteins. In our tests, insertion of XPC gene from T. evansi (TevXPC) in T. cruzi resulted in slower cell growth under normal conditions. After cisplatin treatment, T. cruzi overexpressing its own XPC gene (TcXPC) was able to recover cell division rates faster than T. cruzi expressing TevXPC gene. Based on these tests, it is suggested that TevXPC (being an exogenous protein in T. cruzi) interferes negatively in cellular processes where TcXPC (the endogenous protein) is involved. This probably occurred due interaction of TevXPC with some endogenous molecules or proteins from T.cruzi but incapacity of interaction with others. This reinforces the importance of correctly XPC functioning within the cell.


Resumo O reparo por excisão de nucleotídeos (NER) atua reparando danos no DNA, como lesões causadas por cisplatina. A proteína Xeroderma Pigmentosum complementation group C (XPC) está envolvida no reconhecimento de danos pela via de reparação global do genoma pelo NER (GG-NER) e tem sido estudada em diferentes organismos devido à sua importância em outros processos celulares. Neste trabalho, estudamos proteínas do NER em Trypanosoma cruzi e Trypanosoma evansi, parasitos de humanos e animais, respectivamente. Modelos tridimensionais das proteínas XPC de T. cruzi e T. evansi foram feitos e observou-se poucas diferenças estruturais entre estas proteínas. Durante testes, a inserção do gene XPC de T. evansi (TevXPC) em T. cruzi resultou em crescimento celular mais lento em condições normais. Após o tratamento com cisplatina, T. cruzi superexpressando seu próprio gene XPC (TcXPC) foi capaz de recuperar as taxas de divisão celular mais rapidamente do que T. cruzi expressando o gene TevXPC. Com base nesses testes, sugere-se que TevXPC (sendo uma proteína exógena em T. cruzi) interfere negativamente nos processos celulares em que TcXPC (a proteína endógena) está envolvida. Isso provavelmente ocorreu pois TevXPC é capaz de interagir com algumas moléculas ou proteínas endógenas de T.cruzi, mas é incapaz de interagir com outras. Isso reforça a importância do correto funcionamento de XPC dentro da célula.

5.
Genes (Basel) ; 13(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36360188

ABSTRACT

RPB1, the major and catalytic subunit of human RNA Polymerase II (RNAPII), is specifically degraded by the ubiquitin-proteasome system upon induction of DNA damage by different agents, such as ultraviolet (UV) light. The "last resort" model of RNAPII degradation states that a persistently stalled RNAPII is degraded at the site of the DNA lesion in order to facilitate access to Nucleotide Excision Repair (NER) factors, thereby promoting repair in template strands of active genes. Recent identification and mutation of the lysine residue involved in RPB1 ubiquitylation and degradation unveiled the relevance of RNAPII levels in the control of gene expression. Inhibition of RNAPII degradation after UV light exposure enhanced RNAPII loading onto chromatin, demonstrating that the mere concentration of RNAPII shapes the gene expression response. In this review, we discuss the role of RNAPII ubiquitylation in NER-dependent repair, recent advances in RPB1 degradation mechanisms and its consequences in gene expression under stress, both in normal and repair deficient cells.


Subject(s)
DNA Damage , RNA Polymerase II , Humans , DNA Damage/genetics , DNA Repair/genetics , Gene Expression , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Ubiquitination/genetics
6.
Cancers (Basel) ; 14(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35804887

ABSTRACT

Prostate cancer (PCa) accounts for 22% of the new cases diagnosed in Hispanic men in the US. Among Hispanics, Puerto Rican (PR) men show the highest PCa-specific mortality. Epidemiological studies using functional assays in lymphocytes have demonstrated that having low DRC is a significant risk factor for cancer development. The aim of this study was to evaluate variations in DRC in PR men with PCa. Lymphocytes were isolated from blood samples from PCa cases (n = 41) and controls (n = 14) recruited at a hospital setting. DRC levels through the nucleotide excision repair (NER) pathway were measured with the CometChip using UVC as a NER inductor. The mean DRC for controls and PCa cases were 20.66% (±7.96) and 8.41 (±4.88), respectively (p < 0.001). The relationship between DRC and tumor aggressiveness was also evaluated. Additional comparisons were performed to evaluate the contributions of age, anthropometric measurements, and prostate-specific antigen levels to the DRC. This is the first study to apply the CometChip in a clinical cancer study. Our results represent an innovative step in the development of a blood-based screening test for PCa based on DRC levels. Our data also suggest that DRC levels may have the potential to discriminate between aggressive and indolent cases.

7.
Front Immunol ; 13: 800606, 2022.
Article in English | MEDLINE | ID: mdl-35422806

ABSTRACT

Ultraviolet (UV) radiation is one of the most genotoxic, universal agents present in the environment. UVB (280-315 nm) radiation directly damages DNA, producing cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs). These photolesions interfere with essential cellular processes by blocking transcription and replication polymerases, and may induce skin inflammation, hyperplasia and cell death eventually contributing to skin aging, effects mediated mainly by keratinocytes. Additionally, these lesions may also induce mutations and thereby cause skin cancer. Photolesions are repaired by the Nucleotide Excision Repair (NER) pathway, responsible for repairing bulky DNA lesions. Both types of photolesions can also be repaired by distinct (CPD- or 6-4PP-) photolyases, enzymes that specifically repair their respective photolesion by directly splitting each dimer through a light-dependent process termed photoreactivation. However, as photolyases are absent in placental mammals, these organisms depend solely on NER for the repair of DNA UV lesions. However, the individual contribution of each UV dimer in the skin effects, as well as the role of keratinocytes has remained elusive. In this study, we show that in NER-deficient mice, the transgenic expression and photorepair of CPD-photolyase in basal keratinocytes completely inhibited UVB-induced epidermal thickness and cell proliferation. On the other hand, photorepair by 6-4PP-photolyase in keratinocytes reduced but did not abrogate these UV-induced effects. The photolyase mediated removal of either CPDs or 6-4PPs from basal keratinocytes in the skin also reduced UVB-induced apoptosis, ICAM-1 expression, and myeloperoxidase activation. These findings indicate that, in NER-deficient rodents, both types of photolesions have causal roles in UVB-induced epidermal cell proliferation, hyperplasia, cell death and inflammation. Furthermore, these findings also support the notion that basal keratinocytes, instead of other skin cells, are the major cellular mediators of these UVB-induced effects.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Animals , DNA , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/genetics , Deoxyribodipyrimidine Photo-Lyase/metabolism , Female , Hyperplasia , Inflammation , Keratinocytes/metabolism , Mammals/genetics , Mice , Placenta/metabolism , Pregnancy
8.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216341

ABSTRACT

Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH-DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH-DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA-RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.


Subject(s)
DNA Repair/drug effects , Epithelial Cells/drug effects , Lung/drug effects , Particulate Matter/adverse effects , Xeroderma Pigmentosum Group A Protein/metabolism , A549 Cells , Cell Line, Tumor , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Humans , Lung/metabolism , Lung Neoplasms/metabolism
9.
Front Cell Dev Biol ; 9: 727836, 2021.
Article in English | MEDLINE | ID: mdl-34746125

ABSTRACT

Topoisomerase 2 (TOP2) inhibitors are drugs widely used in the treatment of different types of cancer. Processing of their induced-lesions create double-strand breaks (DSBs) in the DNA, which is the main toxic mechanism of topoisomerase inhibitors to kill cancer cells. It was established that the Nucleotide Excision Repair pathway respond to TOP2-induced lesions, mainly through the Cockayne Syndrome B (CSB) protein. In this paper, we further define the mechanism and type of lesions induced by TOP2 inhibitors when CSB is abrogated. In the absence of TOP2, but not during pharmacological inhibition, an increase in R-Loops was detected. We also observed that CSB knockdown provokes the accumulation of DSBs induced by TOP2 inhibitors. Consistent with a functional interplay, interaction between CSB and TOP2 occurred after TOP2 inhibition. This was corroborated with in vitro DNA cleavage assays where CSB stimulated the activity of TOP2. Altogether, our results show that TOP2 is stimulated by the CSB protein and prevents the accumulation of R-loops/DSBs linked to genomic instability.

10.
Front Cell Dev Biol ; 8: 816, 2020.
Article in English | MEDLINE | ID: mdl-33015036

ABSTRACT

Typical Rho GTPases include the enzymes RhoA, Rac1, and Cdc42 that act as molecular switches to regulate essential cellular processes in eukaryotic cells such as actomyosin dynamics, cell cycle, adhesion, death and differentiation. Recently, it has been shown that different conditions modulate the activity of these enzymes, but their functions still need to be better understood. Here we examine the interplay between RhoA and the NER (Nucleotide Excision Repair) pathway in human cells exposed to UVA, UVB or UVC radiation. The results show high levels and accumulation of UV-induced DNA lesions (strand breaks and cyclobutane pyrimidine dimers, CPDs) in different cells with RhoA loss of function (LoF), either by stable overexpression of negative dominant RhoA (RhoA-N19 mutant), by inhibition with C3 toxin or by transient silencing with siRNA. Cells under RhoA LoF showed reduced levels of γH2AX, p-Chk1 (Ser345) and p-p53 (Ser15) that reflected causally in their accumulation in G1/S phases, in low survival rates and in reduced cell proliferation, also in accordance with the energy of applied UV light. Even NER-deficient cells (XPA, XPC) or DNA translesion synthesis (TLS)-deficient cells (XPV) showed substantial hypersensitivity to UV effects when previously submitted to RhoA LoF. In contrast, analyses of apoptosis, necrosis, autophagy and senescence revealed that all cells displaying normal levels of active RhoA (RhoA-GTP) are more resistant to UV-promoted cell death. This work reaffirms the role of RhoA protein signaling in protecting cells from damage caused by UV radiation and demonstrates relevant communicating mechanisms between actin cytoskeleton and genomic stability.

11.
Environ Int ; 145: 106150, 2020 12.
Article in English | MEDLINE | ID: mdl-33039876

ABSTRACT

Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1ß, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Animals , Brazil , DNA Damage , DNA Repair , Inflammation/chemically induced , Mice , Oxidative Stress , Particulate Matter/analysis , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis
12.
Methods Mol Biol ; 1821: 319-338, 2018.
Article in English | MEDLINE | ID: mdl-30062422

ABSTRACT

Ultraviolet light crossing the ozone layer in the atmospheric barrier affects all forms of living beings on earth. In eukaryotic cells, the nucleotide excision repair (NER) pathway protects the DNA by removing cyclobutane pyrimidine dimers (CPDs) and 6-4-photoproduct (6-4-PP) lesions caused by ultraviolet (UV) light, allowing cells to proliferate. On the other hand, adhesion and invasion processes, primarily regulated by the typical Rho GTPases Rho, Rac, and Cdc42, are also affected by UV radiation effects. Studies focused on determining whether or not these GTPases might affect the NER pathway in different cell models are enlightening and should start with classical experimental methodologies. In this chapter we describe two methods (host cell reactivation assay, or HCR, and slot-blots for CPDs and 6-4-PPs) to assess the direct or indirect involvement of these three GTPases on the NER pathway.


Subject(s)
Cell Proliferation/radiation effects , DNA Repair , Pyrimidine Dimers/metabolism , Ultraviolet Rays/adverse effects , rho GTP-Binding Proteins/metabolism , HeLa Cells , Humans , Pyrimidine Dimers/genetics , rho GTP-Binding Proteins/genetics
13.
RNA Biol ; 15(7): 845-848, 2018.
Article in English | MEDLINE | ID: mdl-29683386

ABSTRACT

Gene expression and DNA repair are fundamental processes for life. During the last decade, accumulating experimental evidence point towards different modes of coupling between these processes. Here we discuss the molecular mechanisms by which RNAPII-dependent transcription affects repair by the Nucleotide Excision Repair system (NER) and how NER activity, through the generation of single stranded DNA intermediates and activation of the DNA damage response kinase ATR, drives gene expression in a genotoxic scenario. Since NER-dependent repair is compromised in Xeroderma Pigmentosum (XP) patients, and having in mind that these patients present a high degree of clinical heterogeneity, we speculate that some of the clinical features of XP patients can be explained by misregulation of gene expression.


Subject(s)
DNA Repair/physiology , DNA, Single-Stranded/metabolism , Gene Expression/radiation effects , Xeroderma Pigmentosum/enzymology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cockayne Syndrome/enzymology , DNA Damage , DNA Helicases/genetics , Humans , Mutation , RNA Polymerase II/metabolism , Skin/radiation effects , Transcription, Genetic/physiology , Ultraviolet Rays/adverse effects
14.
Int J Mol Sci ; 18(11)2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29112132

ABSTRACT

Autophagy and DNA repair are biological processes vital for cellular homeostasis maintenance and when dysfunctional, they lead to several human disorders including premature aging, neurodegenerative diseases, and cancer. The interchange between these pathways is complex and it may occur in both directions. Autophagy is activated in response to several DNA lesions types and it can regulate different mechanisms and molecules involved in DNA damage response (DDR), such as cell cycle checkpoints, cell death, and DNA repair. Thus, autophagy may modulate DNA repair pathways, the main focus of this review. In addition to the already well-documented autophagy positive effects on homologous recombination (HR), autophagy has also been implicated with other DNA repair mechanisms, such as base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Given the relevance of these cellular processes, the clinical applications of drugs targeting this autophagy-DNA repair interface emerge as potential therapeutic strategies for many diseases, especially cancer.


Subject(s)
Autophagy/physiology , DNA Repair/physiology , Animals , Autophagy/genetics , DNA End-Joining Repair/genetics , DNA End-Joining Repair/physiology , DNA Repair/genetics , Homologous Recombination/genetics , Homologous Recombination/physiology , Humans
15.
Neurol Res ; 39(1): 73-82, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27809706

ABSTRACT

Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.


Subject(s)
Mitochondrial Diseases/etiology , Neurodegenerative Diseases/complications , Oxidative Stress/physiology , Animals , Humans
16.
Oncotarget ; 8(10): 16190-16201, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-26918827

ABSTRACT

This study aimed to investigate the associations of XPC c.2815A>C, XPD c.934G>A and c.2251A>C, XPF c.2505T>C and ERCC1 c.354C>T single nucleotide polymorphisms (SNPs) of nucleotide excision repair pathway in outcome of head and neck squamous cell carcinoma (HNSCC) patients treated with cisplatin (CDDP) chemoradiation. Patients with XPC c.2815AC or CC and XPD c.934GA or AA genotypes had 0.20 and 0.38 less chances of presenting moderate/severe ototoxicity and nausea, respectively. Patients with XPD c.934AA and c.2251AC or CC genotypes had 8.64, 12.29 and 3.55 more chances of achieving complete response (CR), consistent ototoxicity and nephrotoxicity, respectively. AA haplotype of XPD and ACT haplotype of XPD and ERCC1 SNPs were associated with 9.30 and 3.41 more chances of achieving CR and consistent nephrotoxicity, respectively. At 24 months of follow-up, patients with XPD c.934AA genotype presented lower progression-free survival and overall survival in Kaplan-Meier estimates, and differences between groups remained the same in univariate Cox analysis. Patients with XPD c.934AA genotype had 2.13 and 2.04 more risks of presenting tumor progression and death than others in multivariate Cox analysis. Our data present preliminary evidence that XPC c.2815A>C, XPD c.934G>A and c.2251A>C, and ERCC1 c.354C>T SNPs alter outcome of HNSCC patients treated with CDDP chemoradiation.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Cisplatin/therapeutic use , DNA Repair , Head and Neck Neoplasms/drug therapy , Polymorphism, Single Nucleotide , Xeroderma Pigmentosum Group D Protein/genetics , Adult , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/genetics , Cisplatin/adverse effects , Female , Follow-Up Studies , Genotype , Haplotypes , Head and Neck Neoplasms/genetics , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Nausea/chemically induced , Neutropenia/chemically induced , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Proportional Hazards Models , Prospective Studies , Signal Transduction/genetics , Vomiting/chemically induced
17.
DNA Repair (Amst) ; 42: 33-43, 2016 06.
Article in English | MEDLINE | ID: mdl-27135788

ABSTRACT

Mitoxantrone (MXT) is an anticancer drug structurally related to anthracyclines, such as doxorubicin (DOX). Here we report that cells deficient in nucleotide excision repair (NER) are very sensitive to MXT. However, cells deficient in each of the NER sub-pathways - transcription coupled repair (deficient in CSB protein) and global genome repair (deficient in XPC protein) - demonstrate a difference in sensitivity from each other and also show different responses in cell cycle profile, DNA synthesis and topo II DNA complex formation upon MXT treatment. XPC-deficient cells are slightly more resistant than CSB-deficient cells, and in the same way as MRC5 NER-proficient cells, show G2/M arrest, normal DNA synthesis rate and a pattern of formation of complexes similar to proficient cells, whereas CSB-deficient cells show accumulation in S phase, reduced DNA synthesis and a more intense signal of topo II DNA complexes, indicating that they remain longer in these cells. Complementation of CSB mutant cells with CSB rescue MXT-induced sensitivity and also a decrease in the signal intensity of the complexes, suggest that resolution of these lesions would take place. Taken together, our results indicate that NER proteins are implicated in the response to MXT and that CSB protein has a key role in processing MXT-induced topo II DNA complexes.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Repair/drug effects , Mitoxantrone/pharmacology , Topoisomerase II Inhibitors/pharmacology , DNA/biosynthesis , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Damage , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Models, Molecular , Nucleic Acid Conformation , Poly-ADP-Ribose Binding Proteins
18.
J Exp Biol ; 218(Pt 19): 3059-67, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26447197

ABSTRACT

The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight.


Subject(s)
Anura/genetics , DNA Damage/radiation effects , DNA Repair , Sunlight/adverse effects , Animals , Anura/growth & development , Apoptosis/radiation effects , Behavior, Animal/radiation effects , Blood Cells/metabolism , Blood Cells/radiation effects , Larva/genetics , Larva/growth & development , Larva/radiation effects , Ultraviolet Rays/adverse effects
19.
Rev. cuba. pediatr ; 86(2): 0-0, abr.-jun. 2014.
Article in Spanish | CUMED | ID: cum-58766

ABSTRACT

Introducción: deficiencias en los mecanismos de reparación del ácido desoxirribonucleico constituyen un factor de riesgo para el desarrollo del cáncer, como ocurre en el xeroderma pigmentoso. Objetivos: evaluar el fenotipo de la reparación por escisión de nucleótidos en pacientes cubanos con una elevada hipersensibilidad al sol, y la sospecha clínica de xeroderma pigmentoso en la fase eritematopigmentaria, mediante la variante alcalina del ensayo cometa. Métodos: se estudiaron 28 pacientes, con predominio de las edades pediátricas. Como inductor del daño al ácido desoxirribonucleico se utilizó la radiación ultravioleta C (254 nm) a una dosis de 40 J/m². El daño del ácido desoxirribonucleico se cuantificó inmediatamente, después de irradiar las células (tiempo 0 minutos) y un tiempo después de la irradiación, incubado a 37 ºC en medio de cultivo, enriquecido con suero fetal al 10 por ciento (tiempo 45 min). Con estos datos se determinó el por ciento de la diferencia en las unidades arbitrarias (UA) entre ambos momentos. Resultados: no se obtuvieron diferencias significativas (p= 0,080976) entre el grupo de pacientes (224,23 UA) y el grupo de sujetos controles (195,43 UA). Los pacientes reconocieron y escindieron el daño inducido en el ácido desoxirribonucleico por luz ultravioleta C, con una eficiencia similar a la de los controles. Conclusiones: el ensayo cometa alcalino acoplado a radiación ultravioleta C permitió identificar, claramente y de forma indirecta, el funcionamiento de los mecanismos de reparación por escisión de nucleótidos, donde actúan las proteínas XPA a XPG. Los sujetos en estudio fueron excluidos de presentar la forma clásica de la enfermedad(AU)


Introduction: deficiencies in the deoxyribonucleic acid repair mechanisms are a risk factor for cancer as is the case of xeroderma pigmentosum. Objectives: to evaluate the phenotype of nucleotide excision repair in Cuban sun hypersensitive patients with clinical suspicion of xeroderma pigmentosum at erythematopigmentary phase, by using the Comet assay alkaline variant. Methods: twenty eight patients mainly at pediatric ages were studied. The used DNA damage inducer was ultraviolet radiation C (254 nm) at 40 J/m2 dose. The DNA damage was quantified immediately after cell irradiation (0 minutes) and some time afterwards, then cultured at 37 ºC and enriched with 10 percent fetal serum (45 minutes). This data allowed determining the percentage of difference in arbitrary units (AU) between both moments. Results: there was no significant differences (p= 0.080976) between the group of patients (224.23 AU) and the control group (195.43 UA). The UV-C induced DNA damage was recognized and excised in the patients with similar effectiveness to that of the controls. Conclusions: the UV-C radiation-coupled alkaline comet assay allowed clearly and indirectly identifying the functioning of the nucleotide excision repair mechanisms in which XPA to XPG proteins influence. The studied subjects did not show the classical form of this disease(AU)


Subject(s)
Humans , DNA , DNA Repair-Deficiency Disorders/prevention & control , Ultraviolet Therapy/methods , Hypersensitivity/diagnosis , Sunlight/adverse effects , DNA Repair/physiology
20.
Rev. cuba. pediatr ; 86(2): 134-146, abr.-jun. 2014. ilus
Article in Spanish | LILACS | ID: lil-721312

ABSTRACT

INTRODUCCIÓN: deficiencias en los mecanismos de reparación del ácido desoxirribonucleico constituyen un factor de riesgo para el desarrollo del cáncer, como ocurre en el xeroderma pigmentoso. OBJETIVOS: evaluar el fenotipo de la reparación por escisión de nucleótidos en pacientes cubanos con una elevada hipersensibilidad al sol, y la sospecha clínica de xeroderma pigmentoso en la fase eritematopigmentaria, mediante la variante alcalina del ensayo cometa. MÉTODOS: se estudiaron 28 pacientes, con predominio de las edades pediátricas. Como inductor del daño al ácido desoxirribonucleico se utilizó la radiación ultravioleta C (254 nm) a una dosis de 40 J/m². El daño del ácido desoxirribonucleico se cuantificó inmediatamente, después de irradiar las células (tiempo 0 minutos) y un tiempo después de la irradiación, incubado a 37 ºC en medio de cultivo, enriquecido con suero fetal al 10 % (tiempo 45 min). Con estos datos se determinó el por ciento de la diferencia en las unidades arbitrarias (UA) entre ambos momentos. RESULTADOS: no se obtuvieron diferencias significativas (p= 0,080976) entre el grupo de pacientes (224,23 UA) y el grupo de sujetos controles (195,43 UA). Los pacientes reconocieron y escindieron el daño inducido en el ácido desoxirribonucleico por luz ultravioleta C, con una eficiencia similar a la de los controles. CONCLUSIONES: el ensayo cometa alcalino acoplado a radiación ultravioleta C permitió identificar, claramente y de forma indirecta, el funcionamiento de los mecanismos de reparación por escisión de nucleótidos, donde actúan las proteínas XPA a XPG. Los sujetos en estudio fueron excluidos de presentar la forma clásica de la enfermedad.


INTRODUCTION: deficiencies in the deoxyribonucleic acid repair mechanisms are a risk factor for cancer as is the case of xeroderma pigmentosum. OBJECTIVES: to evaluate the phenotype of nucleotide excision repair in Cuban sun hypersensitive patients with clinical suspicion of xeroderma pigmentosum at erythematopigmentary phase, by using the Comet assay alkaline variant. METHODS: twenty eight patients mainly at pediatric ages were studied. The used DNA damage inducer was ultraviolet radiation C (254 nm) at 40 J/m2 dose. The DNA damage was quantified immediately after cell irradiation (0 minutes) and some time afterwards, then cultured at 37 ºC and enriched with 10 % fetal serum (45 minutes). This data allowed determining the percentage of difference in arbitrary units (AU) between both moments. RESULTS: there was no significant differences (p= 0.080976) between the group of patients (224.23 AU) and the control group (195.43 UA). The UV-C induced DNA damage was recognized and excised in the patients with similar effectiveness to that of the controls. CONCLUSIONS: the UV-C radiation-coupled alkaline comet assay allowed clearly and indirectly identifying the functioning of the nucleotide excision repair mechanisms in which XPA to XPG proteins influence. The studied subjects did not show the classical form of this disease.


Subject(s)
Humans , Sunlight/adverse effects , Ultraviolet Therapy/methods , DNA , DNA Repair/physiology , DNA Repair-Deficiency Disorders/prevention & control , Hypersensitivity/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL