Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters











Publication year range
1.
Behav Brain Res ; 476: 115249, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39260583

ABSTRACT

BACKGROUND: Maternal separation (MS) in rodents is a paradigm of early life events that affects neurological development in depression. Adolescence is a time of dramatic increases in psychological vulnerability, and being female is a depression risk factor. However, data on whether different MS scenarios affect behavioral deficits and the potential mechanisms in adolescent female mice are limited. METHODS: C57BL/6 J female pups were exposed to different MS (no MS, NMS; MS for 15 min/day, MS15; or 180 min/day, MS180) from postnatal day (PND)1 to PND21 and subjected for behavioral tests during adolescence. Behavioural tests, specifically the open field test (OFT), novel object recognition test (NOR) test and tail suspension test (TST), were performed. The expression of proinflammatory cytokines, hippocampal neurogenesis, neuroinflammation, and gut microbiota were also assessed. RESULTS: The results showed that MS180 induced emotional behavioral deficits and object recognition memory impairment; however, MS15 promoted object recognition memory in adolescent females. MS180 decreased hippocampal neurogenesis of adolescent females, induced an increase in microgliosis, and increased certain inflammatory factors in the hippocampus, including TNF-α, IL-1ß, and IL-6. Furthermore, different MS altered gut microbiota diversity, and alpha diversity in the Shannon index was negatively correlated with the peripheral inflammatory factors TNF-α, IL-1ß, and IL-6. Species difference analysis showed that the gut microbiota composition of the phyla Desulfobacterota and Proteobacteria was affected by the MS. LIMITATIONS: The sex differences in adolescent animal and causality of hippocampal neurogenesis and gut microbiota under different MS need to be further analyzed in depression. CONCLUSION: This study indicates different MS affect recognition memory and emotional behaviors in adolescent females, and gut microbiota-neuroinflammation and hippocampal neurogenesis may be a potential site of early neurodevelopmental impairment in depression.

2.
J Psychiatr Res ; 178: 180-187, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146821

ABSTRACT

Schizophrenia is a complex neuropsychiatric disorder with positive, negative, and cognitive symptoms. In rats, sub-chronic administration of ketamine is used for the induction of schizophrenia model. Increased locomotor activity is one of the most important features of psychotic-like symptoms in rodents. On the other hand, risperidone is a potent antipsychotic medication that is approved for the treatment of schizophrenia and bipolar disorder. In the present research, we aimed to investigate the effect of sub-chronic treatment of ketamine on cognitive and behavioral functions, and brain-derived neurotrophic factor (BDNF) expression level in the prefrontal cortex. Also, we assessed the efficacy of risperidone on cognitive and behavioral impairments induced by ketamine. Possible sex differences were also measured. Ketamine was intraperitoneally injected at the dose of 30 mg/kg for five consecutive days. Risperidone was also intraperitoneally injected at the dose of 2 mg/kg. Novel object recognition memory, pain threshold, locomotor activity, rearing behavior, and BDNF level were evaluated. The results showed that ketamine injection for five consecutive days impaired the acquisition of long-term recognition memory and decreased BDNF level in the prefrontal cortex in both sexes. Also, it decreased pain threshold in females, increased rearing behavior in males, and induced hyperlocomotion with greater effect in females. On the other hand, risperidone restored or attenuated the effect of ketamine on all the behavioral effects and BDNF level. In conclusion, we suggested that there were sex differences in the effects of ketamine on pain perception, locomotion, and rearing behavior in a rat model of schizophrenia.


Subject(s)
Brain-Derived Neurotrophic Factor , Disease Models, Animal , Ketamine , Prefrontal Cortex , Risperidone , Schizophrenia , Sex Characteristics , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Schizophrenia/physiopathology , Male , Female , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Risperidone/pharmacology , Risperidone/administration & dosage , Rats , Antipsychotic Agents/pharmacology , Antipsychotic Agents/administration & dosage , Recognition, Psychology/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Rats, Wistar , Behavior, Animal/drug effects , Pain Threshold/drug effects , Motor Activity/drug effects
3.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914676

ABSTRACT

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

4.
Neuropsychol Rev ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907905

ABSTRACT

Object recognition memory allows us to identify previously seen objects. This type of declarative memory is a primary process for learning. Despite its crucial role in everyday life, object recognition has received far less attention in ADHD research compared to verbal recognition memory. In addition to the existence of a small number of published studies, the results have been inconsistent, possibly due to the diversity of tasks used to assess recognition memory. In the present meta-analysis, we have collected studies from Web of Science, Scopus, PubMed, and Google Scholar databases up to May 2023. We have compiled studies that assessed visual object recognition memory with specific visual recognition tests (sample-match delayed tasks) in children and adolescents diagnosed with ADHD. A total of 28 studies with 1619 participants diagnosed with ADHD were included. The studies were assessed for risk of bias using the Quadas-2 tool and for each study, Cohen's d was calculated to estimate the magnitude of the difference in performance between groups. As a main result, we have found a worse recognition memory performance in ADHD participants when compared to their matched controls (overall Cohen's d ~ 0.492). We also observed greater heterogeneity in the magnitude of this deficit among medicated participants compared to non-medicated individuals, as well as a smaller deficit in studies with a higher proportion of female participants. The magnitude of the object recognition memory impairment in ADHD also seems to depend on the assessment method used.

5.
Physiol Behav ; 277: 114461, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38215863

ABSTRACT

Esketamine, the right-handed optical isomer of racemic ketamine, is a rapidly acting antidepressant approved by the FDA for treatment-resistant depression in 2019. However, few studies have investigated esketamine's role in learning and memory, particularly in the context of memory reconsolidation. Herein, we evaluated esketamine's role in memory reconsolidation in 7-week-old male Institute of Cancer Research mice subjected to the novel object recognition (NOR) memory task. The NOR reconsolidation procedure comprised three phases: sampling, reactivation, and testing. Esketamine-enhanced NOR memory performance when injected into mice 0 h after reactivation rather than following a 6 h delay. Conversely, administering esketamine 24 h after sampling without reactivation did not enhance NOR memory performance. Notably, esketamine exhibited no discernible effects on nonspecific responses, such as locomotor activity and exploratory behavior. Furthermore, the α-amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor antagonist NBQX effectively blocked the esketamine-induced enhancement of memory reconsolidation. In conclusion, esketamine treatment markedly improves memory reconsolidation in NOR tasks, and this effect is linked to AMPA receptor activity.


Subject(s)
Ketamine , Male , Mice , Animals , Ketamine/pharmacology , Antidepressive Agents/pharmacology , Learning
6.
Toxicon ; 240: 107626, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290609

ABSTRACT

Gymnopilins are long chain oligoisoprenoids produced through the condensation of isoprene units from MEV and MEP biosynthetic pathways. In Gymnopilus, these carotenoid-like molecules are recognized as major compounds in some species. In the present study, oligoisoprenoids derived from gymnopilins were dereplicated from Gymnopilus imperialis, a mushroom-forming basidiomycete, using liquid chromatographic coupled with high-resolution mass spectrometry (tandem LC-HRMS/MS) and GNPS. From the dichloromethane extract (Gym-DCM) of G. imperialis we annotated 3 oligoisoprenoids from the GNPS molecular library spectra and 15 analogs from the curation of the molecular networking. Data from NMR spectroscopic of the extract confirmed the annotation of the metabolites. Based on the literature data suggesting the neurotoxic effect of gymnopilins, we investigated the effects of the administering different doses of gymnopilin extracts (1, 4 or 10 mg/kg) and diazepam (4 mg/kg) on the acquisition of object recognition memory (ORM) in mice. By studying novel object recognition memory (ORM), a type of non-aversive memory. ORM was assessed based on the total time of spontaneous exploration of both objects, the discrimination index (DI), and the frequency of contact with both objects. Our present findings reveal, for the first time, that gymnopilins treatment before training modulates ORM in a dose-dependent manner. It is also suggested that differential effects on memory might be related to differential effects on GABAA receptors but do not exclude its effects in other neurotransmitter systems. Another class of secondary metabolites, alkaloids, might modulate AChR, which is essential for maintaining object recognition memory over time.


Subject(s)
Agaricales , Basidiomycota , Mice , Animals , Agaricales/chemistry , Anxiety , Exploratory Behavior
7.
Brain Res ; 1827: 148760, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38211827

ABSTRACT

Memory is a complex cognitive process with distinct stages, such as acquisition, consolidation, and retrieval. The hippocampus plays a crucial role in memory consolidation and retrieval. Physical exercise (PE) has been shown to enhance memory and cognitive functions, but the available research is mainly developed with males. So, there is limited knowledge about acute PE's effects on females' memory. This study aimed to investigate the impact of acute PE on memory in female rats and explore potential sex differences in PE memory modulation. Forty-two female Wistar rats were subjected to a novel object recognition (NOR) task, with half of them undergoing a single session of 30 min of PE after the learning session (memory acquisition). Behavioral assessments showed that acute PE improved memory persistence in female rats, with increased discrimination of novel objects. Biochemical analysis revealed elevated noradrenaline levels in the hippocampus following acute PE and NOR training. Notably, the positive effects of acute PE on female rats' memory were similar to those previously observed in male rats. These findings suggest that acute PE can enhance memory in female rats and underscore the importance of considering sex differences in cognitive research. PE may offer a non-invasive strategy to promote cognitive health in both males and females.


Subject(s)
Memory Consolidation , Memory , Rats , Female , Male , Animals , Rats, Wistar , Learning , Hippocampus
8.
Behav Brain Res ; 452: 114595, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37482305

ABSTRACT

Hypothyroidism is an endocrine-metabolic disorder, and as such it compromises a wide range of physiological functions. Memory deficits and, the most recently described, circadian rhythm disruption are among the impairments caused by thyroid dysfunctions. However, although highly likely, there is no evidence connecting these two effects of hypothyroidism. Here, we hypothesized the time-of-day interferes with the memory deficit caused by hypothyroidism. C57BL/6 J mice from both sexes were subjected to novel object recognition (NOR) task during the rest and active phases, corresponding to ZT 2-4 and 14-16, respectively (ZT: Zeitgeber time; ZT 0: lights on at 07:00 am). First, we showed that neither sex nor ZT altered object recognition memory (ORM) in euthyroid mice. Next, animals were divided into control (euthyroid) and hypothyroid [induced with methimazole (0.01%) and perchlorate (0.1%) treatment in the drinking water for 21 days] groups. Under euthyroid conditions, male and female mice recognized the novel object regardless of the time-of-day. However, hypothyroidism impaired ORM at rest phase (ZT 2-4) in both sexes. Surprisingly, in the active phase (ZT 14-16), the hypothyroid males performed the NOR, though a longer time to execute the task was required. In contrast, female hypothyroid mice showed a greater impairment in ORM. Our results suggest that hypothyroidism may disrupt the circadian rhythm in brain areas related to mnemonic processes since in euthyroid condition ORM is not affected by the time-of-day. Furthermore, our findings in an animal model indicate a pronounced deleterious effect of hypothyroidism in women.


Subject(s)
Hypothyroidism , Female , Mice , Male , Animals , Mice, Inbred C57BL , Hypothyroidism/complications , Memory Disorders/etiology , Memory/physiology , Brain
9.
Neuron ; 111(12): 1887-1897.e6, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37098353

ABSTRACT

Corticosteroid-mediated stress responses require the activation of complex brain circuits involving mitochondrial activity, but the underlying cellular and molecular mechanisms are scantly known. The endocannabinoid system is implicated in stress coping, and it can directly regulate brain mitochondrial functions via type 1 cannabinoid (CB1) receptors associated with mitochondrial membranes (mtCB1). In this study, we show that the impairing effect of corticosterone in the novel object recognition (NOR) task in mice requires mtCB1 receptors and the regulation of mitochondrial calcium levels in neurons. Different brain circuits are modulated by this mechanism to mediate the impact of corticosterone during specific phases of the task. Thus, whereas corticosterone recruits mtCB1 receptors in noradrenergic neurons to impair NOR consolidation, mtCB1 receptors in local hippocampal GABAergic interneurons are required to inhibit NOR retrieval. These data reveal unforeseen mechanisms mediating the effects of corticosteroids during different phases of NOR, involving mitochondrial calcium alterations in different brain circuits.


Subject(s)
Adrenergic Neurons , Corticosterone , Mice , Animals , Corticosterone/pharmacology , Receptors, Cannabinoid , Calcium , Mitochondria , Endocannabinoids , Receptor, Cannabinoid, CB1 , Hippocampus/physiology
10.
Horm Behav ; 150: 105329, 2023 04.
Article in English | MEDLINE | ID: mdl-36841054

ABSTRACT

Prevention of dementia is important, because it is a leading cause of disability in elderly people. We previously reported that acute intraperitoneal treatment with N-acetyl-5-methoxy kynuramine (AMK), a melatonin (MEL) metabolite, enhanced long-term object recognition memory in ICR mice, a MEL deficient strain. Despite the presumable availability of AMK for dementia, its effects on cognitive performance have not been elucidated. It is unclear whether endogenous AMK is responsible for modulating long-term memory performance. To address this question, we assessed the effects of endogenous AMK on learning and memory using an object recognition test. C3H mice, a MEL-proficient strain, showed peak MEL levels at zeitgeber times (ZT) 19 and 22. Object recognition memory at ZT20 was superior to that at ZT8. Norharmane (NHM, 100 mg/kg), an indoleamine-2,3-dioxygenase (IDO) inhibitor, prevented the transformation of MEL to AMK, thereby suppressing AMK synthesis at ZT20. NHM (100 mg/kg) and another IDO inhibitor, 1-methyl-L-tryptophan (1-MT, 100 mg/kg), disrupted elevated cognitive performance at ZT20. These data imply that endogenous AMK may play a physiological role in the modulation of cognitive function. We also investigated the effects of pharmacological doses of MEL and AMK on object recognition memory in young C3H mice. MEL administration of 0.1 mg/kg, but not 0.01 mg/kg, enhanced object recognition memory, whereas 0.01 and 1 mg/kg AMK enhanced object recognition memory. Administration of 0.1 and 1 mg/kg AMK also enhanced object recognition memory in old C3H mice. These findings in MEL-proficient mice should be confirmed in other learning and memory tests before encouraging the clinical use of AMK.


Subject(s)
Dementia , Melatonin , Male , Mice , Animals , Kynuramine/metabolism , Kynuramine/pharmacology , Mice, Inbred C3H , Mice, Inbred ICR , Antioxidants/metabolism , Melatonin/metabolism
11.
Neuropharmacology ; 228: 109464, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36804534

ABSTRACT

Previous studies have shown that dopaminergic activity modulates the salience of novel stimuli enabling the formation of recognition memories. In this work, we hypothesize that dopamine released into the insular cortex (IC) from the ventral tegmental area (VTA) inputs enables the acquisition to consolidate object recognition memory. It has been reported that short training produces weak recognition memories; on the contrary, longer training produces lasting and robust recognition memories. Using a Cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model, we photostimulated the VTA-IC dopaminergic pathway during short training or photoinhibited the same pathway during long training while mice explored objects. Our results showed that the photostimulation of the VTA-IC pathway during a short training enables the acquisition of recognition memory. Conversely, photoinhibition of the same pathway during a long training prevents the acquisition of recognition memory. Interestingly, the exploration time of the objects under photoinhibition or photostimulation of the dopaminergic VTA-IC pathway was not altered. Significantly, this enhancement of acquisition of the object recognition memory through the photostimulation of the VTA dopaminergic neurons could be impaired by the blockage of the D1-like receptors into the IC, either before or after the photostimulation. Altogether, our results suggest that dopamine released by the VTA is required during the acquisition to consolidate the object recognition memory through D1-like receptors into the IC without affecting the activity or the motivation to explore objects.


Subject(s)
Dopamine , Ventral Tegmental Area , Mice , Animals , Dopamine/metabolism , Ventral Tegmental Area/metabolism , Insular Cortex , Mental Recall/physiology , Recognition, Psychology , Dopaminergic Neurons/metabolism
12.
Chin Med Sci J ; 38(1): 29-37, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36851888

ABSTRACT

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Subject(s)
Cannabinoids , Memory , Rats , Animals , Rimonabant/pharmacology , Sleep, REM , Receptors, Cannabinoid , Cannabinoids/pharmacology
13.
Article in English | WPRIM (Western Pacific) | ID: wpr-981590

ABSTRACT

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Subject(s)
Rats , Animals , Rimonabant/pharmacology , Memory , Sleep, REM , Receptors, Cannabinoid , Cannabinoids/pharmacology
14.
Emerg Top Life Sci ; 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36477302

ABSTRACT

Models of episodic memory are successfully established using spontaneous object recognition tasks in rodents. In this review, we present behavioral techniques devised to investigate this type of memory, emphasizing methods based on associations of places and temporal order of items explored by rats and mice. We also provide a review on the areas and circuitry of the medial temporal lobe underlying episodic-like memory, considering that a large number of neurobiology data derived from these protocols. Although spontaneous recognition tasks are commonplace in this field, there is need for careful evaluation of factors affecting animal performance. Such as the ongoing development of tools for investigating the neural basis of memory, efforts should be put in the refinement of experimental designs, in order to provide reliable behavioral evidence of this complex mnemonic system.

15.
Front Behav Neurosci ; 16: 970291, 2022.
Article in English | MEDLINE | ID: mdl-36263298

ABSTRACT

Object recognition, the ability to discriminate between a novel and a familiar stimulus, is critically dependent upon the perirhinal cortex. Neural response reductions upon repetition of a stimulus, have been hypothesized to be the mechanism within perirhinal cortex that supports recognition memory function. Thus, investigations into the mechanisms of long-term depression (LTD) in perirhinal cortex has provided insight into the mechanism of object recognition memory formation, but the contribution of long-term potentiation (LTP) to object recognition memory formation has been less studied. Inhibition of atypical PKC activity by Zeta Inhibitory Pseudosubstrate (ZIP) impairs the maintenance of LTP but not LTD, thus here infusion of ZIP into the perirhinal cortex allowed us to investigate the contribution of LTP-like mechanisms to object recognition memory maintenance. Infusion of ZIP into the perirhinal cortex of rats 24 h after the sample phase impaired performance in an object recognition but not an object location task, in contrast infusion of ZIP into the hippocampus impaired performance in an object location but not an object recognition task. The impairment in object recognition by ZIP was prevented by administration of the peptide GluA23y, which blocks the endocytosis of GluA2 containing AMPA receptors. Finally, performance in a perceptual oddity task, which requires perirhinal cortex function, was not disrupted by ZIP. Together these results demonstrate the importance of LTP-like mechanisms to the maintenance of object recognition memory in the perirhinal cortex.

16.
Neuron ; 110(20): 3389-3405.e7, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36084654

ABSTRACT

Extensive interhemispheric projections connect many homotopic brain regions, including the hippocampal formation, but little is known as to how information transfer affects the functions supported by the target area. Here, we studied whether the commissural projections connecting the medial entorhinal cortices contribute to spatial coding, object coding, and memory. We demonstrate that input from the contralateral medial entorhinal cortex targets all major cell types in the superficial medial entorhinal cortex, modulating their firing rate. Notably, a fraction of responsive cells displayed object tuning and exhibited a reduction in their firing rate upon the inhibition of commissural input. In line with this finding are behavioral results that revealed the contribution of commissural input to episodic-like memory retrieval.


Subject(s)
Entorhinal Cortex , Memory, Episodic , Entorhinal Cortex/physiology , Hippocampus/physiology
17.
Proc Natl Acad Sci U S A ; 119(34): e2203165119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969775

ABSTRACT

Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.


Subject(s)
Memory Consolidation , Memory, Long-Term , Sleep , Wakefulness , Animals , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mental Recall/physiology , Rats , Sleep/physiology , Wakefulness/physiology
18.
Biomedicines ; 10(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35740410

ABSTRACT

Despite being a crucial physiological function of the brain, the mechanisms underlying forgetting are still poorly understood. Estrogens play a critical role in different brain functions, including memory. However, the effects of sex hormones on forgetting vulnerabilitymediated by retroactive interference (RI), a phenomenon in which newly acquired information interferes with the retrieval of already stored information, are still poorly understood. The aim of our study was to characterize the sex differences in interference-mediated forgetting and identify the underlying molecular mechanisms. We found that adult male C57bl/6 mice showed a higher susceptibility to RI-dependent memory loss than females. The preference index (PI) in the NOR paradigm was 52.7 ± 5.9% in males and 62.3 ± 13.0% in females. The resistance to RI in female mice was mediated by estrogen signaling involving estrogen receptor α activation in the dorsal hippocampus. Accordingly, following RI, females showed higher phosphorylation levels (+30%) of extracellular signal-regulated kinase1/2 (ERK1/2) in the hippocampus. Pharmacological inhibition of ERK1/2 made female mice prone to RI. The PI was 70.6 ± 11.0% in vehicle-injected mice and 47.4 ± 10.8% following PD98059 administration. Collectively, our data suggest that hippocampal estrogen α receptor-ERK1/2 signaling is critically involved in a pattern separation mechanism that inhibits object-related RI in female mice.

19.
Neurosci Lett ; 779: 136634, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35429587

ABSTRACT

Methamphetamine (METH) has been reported to induce social and recognition memory impairment. Evidence suggests that the cannabinoid system has an important modulatory role in cognitive processing and social interaction. Nonetheless, no previous study has investigated the probable role of the cannabinoids system on METH-induced deficits of novel object recognition (NOR) memory and social interaction. Adult male rats were given a neurotoxic METH regimen (four injections of 6 mg/kg, s.c, at 2 h intervals). One week later, they were examined for either NOR or social interaction in different groups. The cannabinoid type 1 receptor (CB1R) antagonist rimonabant (1 or 3 mg/kg, i.p.) improved METH-induced impairment of the acquisition, consolidation, and retrieval, but not reconsolidation, of NOR and also METH-induced impairment of social behavior. Administration of the CB1R agonist WIN 55,212-2 (WIN; 3 or 5 mg/kg, i.p.) did not affect memory deficits or social behavior impairment induced by METH. Our findings may indicate that METH neurotoxicity impairs social and recognition memory. On the other hand, the CB1R antagonist rimonabant, but not the CB1R agonist WIN, prevented these negative effects of METH neurotoxicity. Thus, it seems that the CB1R can be targeted to prevent the adverse effects of METH on cognition and social behavior, at least at experimental levels.


Subject(s)
Cannabinoids , Methamphetamine , Neurotoxicity Syndromes , Animals , Cannabinoid Receptor Antagonists/pharmacology , Male , Memory Disorders/chemically induced , Memory Disorders/prevention & control , Methamphetamine/toxicity , Rats , Receptor, Cannabinoid, CB1 , Rimonabant
20.
Neuroscience ; 497: 206-214, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35314253

ABSTRACT

Memories are initially labile and become stable through consolidation. Once consolidated, a memory can be destabilized by a reminder, requiring reconsolidation to become stable again. Memory reconsolidation has been evidenced in several learning tasks, including novel object recognition (NOR). But the features of the reminder that trigger memory destabilization and reconsolidation in this task are poorly characterized. Memory reconsolidation can be evidenced by delivering either an amnesic agent or a memory enhancer after reactivation and testing the resulting long-term memory alteration. Here we trained male mice for 15 min to induce a strong memory formation. Sulfasalazine, a specific inhibitor of the NF-κB pathway, was administered as an amnesic agent in the dorsal hippocampus. NF-κB is a key transcription factor required for consolidation and reconsolidation. We found that reconsolidation was induced when animals were re-exposed for 5 min to a combination of novel and familiar objects, but not to either two familiar or two novel objects. No destabilization was induced by re-exposure to the context without objects. Re-exposure to a combination of novel and familiar objects induced destabilization with a reactivation session as brief as 1 min. One minute of training induced a weak memory that could be enhanced by sodium butyrate, an inhibitor of histone deacetylases (HDACs), after 1 min of re-exposure. Histone acetylation is an epigenetic mechanism involved in gene expression regulation which positively correlates with memory. Thus, in this study we have performed an accurate characterization of the features of the reminder effective in triggering hippocampal NF-κB-dependent reconsolidation.


Subject(s)
Memory Consolidation , Memory , Animals , Hippocampus/metabolism , Learning , Male , Memory/physiology , Mice , NF-kappa B/metabolism , Sulfasalazine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL