Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Metab Eng ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389255

ABSTRACT

Escherichia coli Nissle 1917 (EcN), the probiotic featured with well-established safety in different host, is emerging as a favored chassis for the construction of engineered probiotics for disease treatment. However, limited by the low intestinal colonization ability of EcN, repeated administration is required to maximize the health benefits of the EcN-derived engineered probiotics. Here, using fecal metabolites as "metabolites pool", we developed a metabolomic strategy to characterize the comprehensive metabolic profile of EcN. Compared with Prevotella copri DSM 18205 (P. copri), one of the dominant microbes in gut flora, EcN exhibited minor growth advantage under the fecal metabolites-containing condition for its lower metabolic capability towards fecal metabolites. Further study indicated that EcN lacked the ability to import the oligopeptides containing more than two amino acids. The shortage of oligopeptides-derived amino acids might limit the growth of EcN by restricting its purine metabolism. Assisted with the bioinformatic and qRT-PCR analyses, we identified a tripeptides-specific importer Pc-OPT in P. copri, which was mainly distributed in genera Prevotella and Bacteroides. Overexpression of Pc-OPT improved the tripeptides importation of EcN and promoted its growth and intestinal colonization. Notably, 16S rRNA gene amplicon sequencing results indicated that strengthening the oligopeptides importation ability of EcN might promote its intestinal colonization by adjusting the gut microbial composition. Our study reveals that the growth and intestinal colonization of EcN is limited by its insufficient oligopeptides importation and paves road for promoting the efficacy of the EcN-derived synthetic probiotics by improving their intestinal colonization ability.

2.
Food Microbiol ; 124: 104599, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244358

ABSTRACT

Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.


Subject(s)
Bacillus subtilis , Biofilms , Fermentation , Protein Hydrolysates , Soybean Proteins , Vitamin K 2 , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Biofilms/growth & development , Vitamin K 2/analogs & derivatives , Vitamin K 2/metabolism , Protein Hydrolysates/metabolism , Soybean Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Quorum Sensing
3.
Mar Drugs ; 22(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057431

ABSTRACT

High Fischer ratio oligopeptides (HFOs) have a variety of biological activities, but their mechanisms of action for anti-fatigue are less systematically studied at present. This study aimed to systematically evaluate the anti-fatigue efficacy of HFOs from Antarctic krill (HFOs-AK) and explore its mechanism of action through establishing the fatigue model of endurance swimming in mice. Therefore, according to the comparison with the endurance swimming model group, HFOs-AK were able to dose-dependently prolong the endurance swimming time, reduce the levels of the metabolites (lactic acid, blood urea nitrogen, and blood ammonia), increase the content of blood glucose, muscle glycogen, and liver glycogen, reduce lactate dehydrogenase and creatine kinase extravasation, and protect muscle tissue from damage in the endurance swimming mice. HFOs-AK were shown to enhance Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities and increase ATP content in muscle tissue. Meanwhile, HFOs-AK also showed significantly antioxidant ability by increasing the activities of superoxide dismutase and glutathione peroxidase in the liver and decreasing the level of malondialdehyde. Further studies showed that HFOs-AK could regulate the body's energy metabolism and thus exert its anti-fatigue effects by activating the AMPK signaling pathway and up-regulating the expression of p-AMPK and PGC-α proteins. Therefore, HFOs-AK can be used as an auxiliary functional dietary molecules to exert its good anti-fatigue activity and be applied to anti-fatigue functional foods.


Subject(s)
Euphausiacea , Fatigue , Oligopeptides , Animals , Mice , Fatigue/drug therapy , Euphausiacea/chemistry , Oligopeptides/pharmacology , Male , Swimming , Energy Metabolism/drug effects , Physical Conditioning, Animal , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Liver/drug effects , Liver/metabolism , Antioxidants/pharmacology
4.
Food Chem ; 455: 139777, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850970

ABSTRACT

In this study, the overall sensory characteristics and low-molecule-weight compounds were analyzed to achieve the discrimination of different commercial salmons and investigate the salmon's sensory and nutritional quality. The results showed that above the overall sensory properties, O. mykiss, S. salar, and O. kisutch were the most satisfied salmons by the panel with the desirable texture and flavor, which displayed a large potential for growth in the consumption market. The alcohols and sulfur compounds were key volatile compounds contributing to typical aroma of O. masou and O. gorbuscha, response higher than others by 147% to 167%. The oligopeptides and phospholipids in salmon could be used as biomarkers for discrimination of these salmon. Oligopeptides were also closely related to the taste quality of salmon. Seventeen oligopeptides showed potential umami activity based on molecular docking results, especially Arg-Val and Ser-Asn, which were the key tastants contributing to the umami of salmon.


Subject(s)
Oligopeptides , Salmon , Seafood , Taste , Animals , Oligopeptides/chemistry , Oligopeptides/analysis , Seafood/analysis , Humans , Molecular Docking Simulation , Molecular Weight , Phospholipids/chemistry , Odorants/analysis , Nutritive Value
5.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611748

ABSTRACT

Stem cell-derived exosomes (SC-Exos) are used as a source of regenerative medicine, but certain limitations hinder their uses. The effect of hydrolyzed collagen oligopeptides (HCOPs), a functional ingredient of SC-Exos is not widely known to the general public. We herein evaluated the combined anti-aging effects of HCOPs and exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exos) using a senescence model established on human skin fibroblasts (HSFs). This study discovered that cells treated with HucMSC-Exos + HCOPs enhanced their proliferative and migratory capabilities; reduced both reactive oxygen species production and senescence-associated ß-galactosidase activity; augmented type I and type III collagen expression; attenuated the expression of matrix-degrading metalloproteinases (MMP-1, MMP-3, and MMP-9), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α); and decreased the expression of p16, p21, and p53 as compared with the cells treated with HucMSC-Exos or HCOPs alone. These results suggest a possible strategy for enhancing the skin anti-aging ability of HucMSC-Exos with HCOPs.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Humans , Fibroblasts , Aging , Collagen Type III , Umbilical Cord
6.
Nutrients ; 16(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613037

ABSTRACT

Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1ß (IL-1ß), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.


Subject(s)
Antioxidants , Hydrogen Peroxide , Animals , Mice , Humans , Hydrogen Peroxide/pharmacology , Antioxidants/pharmacology , Endothelial Cells , Fibroblasts , Mitochondria , Collagen
7.
Metabolites ; 14(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38535323

ABSTRACT

Resistance to anticancer therapeutics is a major global concern. Thus, new anticancer agents should be aimed against novel protein targets to effectively mitigate the increased resistance. This study evaluated the potential of secondary metabolites from a bacterial endophyte, as new anticancer agents, against a novel protein target, fibroblast growth factor. In silico genomic characterization of the Bacillus sp. strain MHSD_37 was used to identify potential genes involved in encoding secondary metabolites with biological activity. The strain was also exposed to stress and liquid chromatography-mass spectrometry used for the identification and annotation of secondary metabolites of oligopeptide class with anticancer activity. Selected metabolites were evaluated for their anticancer activity through molecular docking and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties analysis. Phylogenetic analysis revealed that strain MHSD_37 shared close evolutionary relationships with Bacillus at the species level, with no identified relationships at the sub-species level. Both in silico genomic characterization and spectrometry analysis identified secondary metabolites with potential anticancer activity. Molecular docking analysis illustrated that the metabolites formed complexes with the target protein, fibroblast growth factor, which were stabilized by hydrogen bonds. Moreover, the ADMET analysis showed that the metabolites passed the toxicity test for use as a potential drug. Thereby, Bacillus sp. strain MHSD_37 is a potential novel strain with oligopeptide metabolites that can be used as new anticancer agents against novel protein targets.

8.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542755

ABSTRACT

During ageing, the permeability of the intestinal barrier increases, the integrity of the intestinal barrier decreases, and the physiology of intestinal cells changes. Furthermore, intestinal inflammation and excessive oxidative stress are both likely to cause systemic diseases. Ginseng oligopeptides have a positive significant effect in terms of improving human health and delaying ageing, but their role in the ageing of the intestine has not been studied much. In our experiment, we constructed a gut-on-a-chip model and induced senescence of the chip with H2O2 so as to explore the effects of ginseng oligopeptides on the senescent intestine. The experimental results showed that ginseng oligopeptides had no obvious effects on the integrity of the intestine, including the TEER value and the expression of tight junction proteins. However, ginseng oligopeptides might have other positive effects, such as inhibiting excessive cell proliferation, promoting mucin secretion, and increasing the antioxidant capacity of the intestine, to improve intestinal health.


Subject(s)
Antioxidants , Panax , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Panax/metabolism , Hydrogen Peroxide/metabolism , Oligopeptides/pharmacology , Oligopeptides/metabolism , Lab-On-A-Chip Devices , Intestinal Mucosa/metabolism , Tight Junctions/metabolism
9.
Biomedicines ; 12(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38540225

ABSTRACT

Spinal fusions are performed to treat congenital skeletal malformations, spondylosis, degenerative disk diseases, and other pathologies of the vertebrae that can be resolved by reducing motion between neighboring vertebrae. Unfortunately, up to 100,000 fusion procedures fail per year in the United States, suggesting that efforts to develop new approaches to improve spinal fusions are justified. We have explored whether the use of an osteotropic oligopeptide to target an attached bone anabolic agent to the fusion site might be exploited to both accelerate the mineralization process and improve the overall success rate of spinal fusions. The data presented below demonstrate that subcutaneous administration of a modified abaloparatide conjugated to 20 mer of D-glutamic acid not only localizes at the spinal fusion site but also outperforms the standard of care (topically applied BMP2) in both speed of mineralization (p < 0.05) and overall fusion success rate (p < 0.05) in a posterior lateral spinal fusion model in male and female rats, with no accompanying ectopic mineralization. Because the bone-localizing conjugate can be administered ad libitum post-surgery, and since the procedure appears to improve on standard of care, we conclude that administration of a bone-homing anabolic agent for improvement of spinal fusion surgeries warrants further exploration.

10.
J Agric Food Chem ; 72(12): 6360-6371, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38489847

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) represents the most prevalent type of chronic liver disease, spanning from simple steatosis to nonalcoholic steatohepatitis (NASH). Corn oligopeptide (CP) is a functional peptide known for its diverse pharmacological effects on metabolism. In this study, we evaluated the protective activity of CP against fatty liver disease. Oral administration of CP significantly reduced body weight gain by 2.95%, serum cholesterol by 22.54%, and liver injury, as evidenced by a reduction of 32.19% in serum aspartate aminotransferase (AST) and 49.10% in alanine aminotransferase (ALT) levels in mice subjected to a high-fat diet (HFD). In a streptozotocin/HFD-induced NASH mouse model, CP attenuated body weight gain by 5.11%, liver injury (with a 34.15% decrease in AST and 11.43% decrease in ALT), and, to some extent, liver inflammation and fibrosis. Proteomic analysis revealed the modulation of oxidative phosphorylation and sirtuin (SIRT) signaling pathways by CP. Remarkably, CP selectively inhibited the hepatic expression of mitochondrial SIRT3 and SIRT5 in both HFD and NASH models. In summary, CP demonstrates a preventive effect against metabolic-stress-induced NAFLD progression by modulating oxidative stress and the SIRT signaling pathway, suggesting the potential of CP as a therapeutic agent for the treatment of NAFLD and advanced-stage NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sirtuins , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Zea mays/metabolism , Proteomics , Liver/metabolism , Signal Transduction , Weight Gain , Diet, High-Fat , Oligopeptides/metabolism , Sirtuins/metabolism , Mice, Inbred C57BL
11.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474153

ABSTRACT

Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.


Subject(s)
Antioxidants , Panax , Humans , Antioxidants/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Panax/chemistry , Hydrogen Peroxide/metabolism , Plant Extracts/pharmacology , Oxidative Stress , Oligopeptides/pharmacology
12.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38523338

ABSTRACT

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Subject(s)
Bacillus subtilis , Panax , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Panax/chemistry , Hydrogen Peroxide/metabolism , Oxidative Stress , Oligopeptides/genetics , Oligopeptides/pharmacology , Oligopeptides/metabolism
13.
Foods ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338571

ABSTRACT

High Fischer ratio oligopeptides (HFOs) exhibit diverse biological activities, including anti-inflammatory and antioxidant properties. HFOs from gluten origin were prepared through fermentation and enzymatic hydrolysis and then characterized using free amino acid analysis and scanning electron microscopy (SEM). Following intervention, the levels of serum total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic malondialdehyde (MDA) in the rats significantly decreased (p < 0.05). Simultaneously, there was an increasing trend in superoxide dismutase (SOD) levels, and glutathione (GSH) levels were significantly elevated (p < 0.05). The mRNA expression levels of alcohol metabolism-related genes (ADH4, ALDH2, and CYP2E1) exhibited a significant increase (p < 0.05). Histological examination revealed a reduction in liver damage. The findings indicate that high Fischer ratio oligopeptides, prepared through enzymatic and fermentation methods, significantly improve lipid levels, ameliorate lipid metabolism disorders, and mitigate oxidative stress, and exhibit a discernible alleviating effect on alcoholic liver injury in rats.

14.
Int J Food Sci Nutr ; 75(2): 134-147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185901

ABSTRACT

Food-derived oligopeptides (FOPs) exhibit various bioactivities. However, little was known about their sequence changes in the gastrointestinal tract and the effect of changes on bioactivities. FOPs' sequence features, changes and effects on bioactivities have been summarised. The sequence length of FOPs decreases with increased exposure of hydrophobic and basic amino acids at the terminal during simulated gastrointestinal digestion. A decrease in bioactivities after simulated intestinal absorption has correlated with a decrease of Leu, Ile, Arg, Tyr, Gln and Pro. The sequence of FOPs that pass readily through the intestinal epithelium corresponds to transport modes, and FOPs whose sequences remain unchanged after transport are the most bioactive. These include mainly dipeptides to tetrapeptides, consisting of numerous hydrophobic and basic amino acids, found mostly at the end of the peptide chain, especially at the C-terminal. This review aims to provide a foundation for applications of FOPs in nutritional supplements and functional foods.


Subject(s)
Oligopeptides , Peptides , Amino Acid Sequence , Oligopeptides/metabolism , Amino Acids, Basic , Digestion
15.
J Agric Food Chem ; 72(1): 657-669, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109376

ABSTRACT

Amadori rearrangement products (ARPs), as intermediates of the Maillard reaction (MR), are potential natural flavor additives but there is a lack of investigation especially in oligopeptide-ARPs. This study for the first time conducted a systematic analysis in comparing ARPs of glycine, diglycine, triglycine, and glucose to corresponding classic MR systems, including production, stability, and flavor analysis. The ARPs were effectively produced by prelyophilization with heating at 70 °C for 60 min and purified to 96% by a two-step purification method. Correlated with the stability order of amino compounds (glycine > diglycine > triglycine), the stability order of ARPs was Gly-ARP > Digly-ARP ≈ Trigly-ARP. In a negative correlation with heating temperature and time, ARPs were less stable than original amino compounds at high temperatures (100, 130, and 160 °C). ARPs exhibited better flavor formation ability in pyrazines and furans than MR systems, with similar flavor compositions but different preferences. Diglycine- and triglycine-ARPs exhibited better flavor formation efficiency than glycine-ARP. Heating temperature and time, initial pH, and carbon chain length were found to be the parameters that affect the stability and flavor formation of ARPs. This study suggested that ARPs, especially peptide-ARPs, have great potential for usage as food flavor additives in the future.


Subject(s)
Glycine , Glycylglycine , Glycine/chemistry , Food Additives , Flavoring Agents/chemistry , Glucose/chemistry , Feasibility Studies , Oligopeptides , Maillard Reaction
16.
Food Res Int ; 174(Pt 1): 113616, 2023 12.
Article in English | MEDLINE | ID: mdl-37986471

ABSTRACT

Hemp seeds have attracted the interest of the food industry recently, to be employed as functional food, considering their nutritional composition, highlighting the high content and quality of the proteins. In this study, ten hemp protein hydrolysates (HPHs) were obtained by enzymatic hydrolysis with two food-grade proteases from a hemp protein isolate and the inflammatory properties were evaluated in Caco-2 cell line. To this end, the gene expression and the release of proinflammatory and anti-inflammatory cytokines by Caco-2 cells stimulated with bacterial lipopolysaccharide and treated with HPHs at concentrations of 50 and 100 µg/mL were analyzed. The peptides contained in each HPH were identified and those with higher quality of the match in the spectrum were subjected to in silico analyses to determine which peptides were bioactive and contributing to the immunomodulatory activity of the hydrolysates. The results suggest that the immunomodulatory properties of these HPHs could have a beneficial effect at the level of the intestinal epithelium. The HPH20A and HPH60A + 15F exerted high immunomodulatory properties based on the cytokine levels release. The oligopeptides MAEKEGFEWVSF and GLHLPSYTNTPQLVYIVK were proposed as the most active ones. The potential of these peptides as nutraceuticals to prevent or pretreat intestinal inflammation is promising, though requires validation by in vivo assays.


Subject(s)
Cannabis , Humans , Cannabis/chemistry , Caco-2 Cells , Seeds/chemistry , Peptides/chemistry , Intestines
17.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894914

ABSTRACT

Recent research highlights the key role of iron dyshomeostasis in the pathogenesis of prostate cancer (PCa). PCa cells are heavily dependent on bioavailable iron, which frequently results in the reprogramming of iron uptake and storage pathways. Although advanced-stage PCa is currently incurable, bioactive peptides capable of modulating key iron-regulatory genes may constitute a means of exploiting a metabolic adaptation necessary for tumor growth. Recent annual increases in PCa incidence have been reported, highlighting the urgent need for novel treatments. We examined the ability of LNCaP, PC3, VCaP, and VCaP-EnzR cells to form colonies in the presence of androgen receptor inhibitors (ARI) and a series of iron-gene modulating oligopeptides (FT-001-FT-008). The viability of colonies following treatment was determined with clonogenic assays, and the expression levels of FTH1 (ferritin heavy chain 1) and TFRC (transferrin receptor) were determined with quantitative polymerase chain reaction (PCR). Peptides and ARIs combined significantly reduced PCa cell growth across all phenotypes, of which two peptides were the most effective. Colony growth suppression generally correlated with the magnitude of concurrent increases in FTH1 and decreases in TFRC expression for all cells. The results of this study provide preliminary insight into a novel approach at targeting iron dysmetabolism and sensitizing PCa cells to established cancer treatments.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Iron/metabolism , Androgens , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Genes, Regulator , Peptides/genetics , Peptides/pharmacology , Peptides/metabolism , Receptors, Transferrin/genetics , Ferritins/genetics , Oxidoreductases/metabolism
18.
Mar Drugs ; 21(10)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37888482

ABSTRACT

In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.


Subject(s)
Anti-Infective Agents , Depsipeptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oligopeptides , Antimicrobial Peptides
19.
Appl Environ Microbiol ; 89(11): e0114123, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37843270

ABSTRACT

IMPORTANCE: Limited nitrogen supply can prevent the completion of alcoholic fermentation. Supplementation through peptides as an alternative, natural source of nitrogen for yeast offers an interesting solution for this issue. In this work, the S. cerevisiae peptide transporters of the Opt and Fot families were studied. We demonstrated that Fot and Opt2 have a broader peptide length preference than previously reported, enabling yeasts to acquire sufficient nitrogen from peptides without requiring additional ammonia or amino acids to complete fermentation. On the contrary, Opt1 was unable to consume any peptide in the given conditions, whereas it has been described elsewhere as the main peptide transporter for peptides longer than three amino acid residues in experiments in laboratory conditions. This controversy signifies the need in applied sciences for approaching experimental conditions to those prevalent in the industry for its more accurate characterization. Altogether, this work provides further evidence of the importance of peptides as a nitrogen source for yeast and their consequent positive impact on fermentation kinetics.


Subject(s)
Saccharomyces cerevisiae , Wine , Humans , Saccharomyces cerevisiae/metabolism , Nitrogen/metabolism , Biological Transport , Oligopeptides/metabolism , Fermentation
20.
Adv Sci (Weinh) ; 10(31): e2301544, 2023 11.
Article in English | MEDLINE | ID: mdl-37749875

ABSTRACT

Self-assembling of peptides is essential for a variety of biological and medical applications. However, it is challenging to investigate the self-assembling properties of peptides within the complete sequence space due to the enormous sequence quantities. Here, it is demonstrated that a transformer-based deep learning model is effective in predicting the aggregation propensity (AP) of peptide systems, even for decapeptide and mixed-pentapeptide systems with over 10 trillion sequence quantities. Based on the predicted AP values, not only the aggregation laws for designing self-assembling peptides are derived, but the transferability relation among the APs of pentapeptides, decapeptides, and mixed pentapeptides is also revealed, leading to discoveries of self-assembling peptides by concatenating or mixing, as consolidated by experiments. This deep learning approach enables speedy, accurate, and thorough search and design of self-assembling peptides within the complete sequence space of oligopeptides, advancing peptide science by inspiring new biological and medical applications.


Subject(s)
Deep Learning , Peptides/chemistry , Oligopeptides
SELECTION OF CITATIONS
SEARCH DETAIL