ABSTRACT
A trending problem of Extra Virgin Olive Oil (EVOO) adulteration is investigated using two analytical platforms, involving: (1) Near Infrared (NIR) spectroscopy, resulting in a two-way data set, and (2) Fluorescence Excitation-Emission Matrix (EEFM) spectroscopy, producing three-way data. The related instruments were employed to study genuine and adulterated samples. Each data set was first separately analyzed using the Data Driven-Soft Independent Modeling of Class Analogies (DD-SIMCA) method, based on Principal Component Analysis (for the two-way NIR data) and PARallel FACtor analysis (for the three-way EEFM data). The data sets were then processed together using the multi-block fusion method, based on the concept of Cumulative Analytical Signal (CAS). A comparison of the data processing methods in terms of sensitivity, specificity and selectivity showed the following order of excellence: NIR < EEFM < NIR + EEFM. This finding confirms the effectiveness of multi-block data fusion, which cumulatively improves the model performance.
ABSTRACT
The imbalance in oxidant production and chronic inflammation are the main mechanisms that lead to the detrimental effects of diabetes on skin wound healing. Thus, administration of antioxidants could improve diabetic wound healing. This study aimed to understand the effects of extra virgin olive oil (EVOO) or hydroxytyrosol (HT) in skin wound healing under diabetic conditions. Skin wounds in streptozotocin-induced diabetic mice were topically treated with HT. Some diabetic animals were fed with a diet rich in EVOO. Wounds were harvested 7 days later. In in vitro assays, fibroblasts and macrophages were treated with high levels of glucose and HT. The EVOO or HT promoted wound closure and collagen deposition in diabetic mouse wounds. The EVOO or HT reduced the number of infiltrated neutrophils, tumour necrosis factor-α, lipid peroxidation, and nuclear factor erythroid 2-related factor 2 in diabetic mouse wounds. The EVOO or HT also increased the number of macrophages with anti-inflammatory phenotype and interleukin-10 in diabetic mouse wounds. In the in vitro assays, HT promoted the fibroblast migration, collagen gel contraction, and switched macrophages to an anti-inflammatory phenotype under high glucose conditions. In conclusion, the diet supplementation with EVOO or topical application of HT promotes skin wound healing under diabetic conditions and can be a possible therapeutic tool for the treatment of those lesions.
ABSTRACT
CONTEXT: Olive oil is a vegetable oil that provides health benefits, including a reduction in free radicals and total cholesterol and prevention of chronic diseases. The escalating incidence of chronic diseases presents a substantial challenge to public health, prompting numerous studies to assess these health-related effects. Despite several systematic reviews and meta-analyses summarizing the association between olive oil consumption and specific health outcomes, there is no summary of the accumulated evidence from these reviews. OBJECTIVE: This umbrella review summarizes the evidence on olive oil consumption or intervention in adults and its association with multiple risk factors and diseases. DATA SOURCES: We retrieved systematic reviews of randomized trials or observational studies on oral interventions or the consumption of olive oil. The systematic search encompassed databases including MEDLINE, Embase, Scopus, Web of Science, LILACS, and CENTRAL from inception to February 6, 2023. DATA EXTRACTION: Two independent reviewers conducted data extraction and assessed methodological quality using the Joanna Briggs Institute tool. DATA ANALYSIS: Overall, 17 systematic reviews of randomized trials and observational studies, covering outcomes such as cardiovascular diseases, cancer, type 2 diabetes, glucose metabolism, inflammatory and oxidative markers, and all-cause mortality, were included. The evidence suggests a beneficial association between olive oil consumption and cardiovascular diseases, cancer, type 2 diabetes, and all-cause mortality. However, the evidence was less definitive for inflammatory markers, oxidative stress, glucose metabolism, and blood lipid outcomes. Several meta-analyses revealed high heterogeneity and wide confidence intervals, along with a limited number of randomized clinical trials. CONCLUSION: Given the high heterogeneity and low quality of evidence, further studies involving randomized trials are imperative. Prioritizing an in-depth analysis of specific olive oil components and using a control group with distinct characteristics and different effects is strongly recommended. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42022357290.
ABSTRACT
Chile has two certified origin olive products: Extra-Virgin Olive Oil (EVOO) from Huasco valley and the Azapa variety table olive from the Azapa valley. However, efficient methodologies are needed to determine the varieties and raw materials involved in the end products. In this study, we assessed the size of alleles from ten microsatellites in 20 EVOOs and in leaves and fruits of 16 olive varieties cultivated in Chile to authenticate their origins. The identification of varieties relied on specific allele sizes derived from microsatellites markers UDO99-011 and DCA18-M found in leaves and fruit mesocarp. While most Chilean single-variety EVOOs matched the variety declared on the label, inconsistencies were observed in single-variety EVOOs containing multiple varieties. Our findings confirm that microsatellites serve as a valuable as diagnostic tools for ensuring the quality control of Geographical Indication certification for Azapa olives and EVOO with Designation of Origin from Huasco.
Chile cuenta con dos productos de oliva de origen certificado: El aceite de oliva virgen extra (AOVE) del valle del Huasco y la aceituna de mesa de la variedad Azapa del valle de Azapa. Sin embargo, se necesitan metodologías eficientes para determinar las variedades y materias primas involucradas en los productos finales. En este estudio, evaluamos el tamaño de los alelos de diez microsatélites en 20 AOVEs y en hojas y frutos de 16 variedades de aceituna cultivadas en Chile para autentificar sus orígenes. La identificación de las variedades se basó en los tamaños alélicos específicos derivados de los marcadores microsatélites UDO99-011 y DCA18-M encontrados en las hojas y el mesocarpio de los frutos. Aunque la mayoría de los AOVEs chilenos monovarietales coincidían con la variedad declarada en la etiqueta, se observaron incoherencias en los AOVEs monovarietales que contenían múltiples variedades. Nuestros hallazgos confirman que los microsatélites sirven como valiosas herramientas de diagnóstico para asegurar el control de calidad de la certificación de Indicación Geográfica para aceitunas de Azapa y AOVE con Denominación de Origen de Huasco.
Subject(s)
Plant Extracts/genetics , Microsatellite Repeats , Olea/genetics , Olive Oil/chemistry , Geography , ChileABSTRACT
The frequency of early frosts has increased in recent years, which are injurious to olive growing, causing losses in the yield and quality of virgin olive oil. In this research, it was studied how the management of agronomic factors mitigates frost damage in Arbequina olives, minimizing the loss of phenols and volatiles in virgin olive oil, at different fruit ripening stages. A Box-Behnken design and multivariate analysis were performed, with three levels of irrigation, potassium fertilization, and foliar copper application (15 treatments). Virgin olive oil was extracted from fresh and frozen olives. Light frost caused a significant decrease in the total phenols and secoiridoid compounds in and the antioxidant capacity of the frost-affected oils, which were perceived as more pungent and had the slight defect of "frostbitten olives". According to the Box-Behnken design, an 86% reference evapotranspiration (ET0) or higher with 100 potassium oxide units (UK2O) and a 100% ET0 or higher with 250 UK2O would be required to minimize the effect of light frost on phenols and volatiles. Partial Least Squares Regression-Discriminant Analysis (PLS-DA) differentiated the virgin olive oils according to their ripening stage and fresh and frost conditions. Moreover, PLS-DA positively correlated a 75-100% ET0 and 0 Uk2O with the dialdehydic form of the decarboxymethyl ligstroside aglycone (p-HPEA-EDA), the dialdehydic form of the decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA), the dialdehydic form of the ligstroside aglycone (p-HPEA-EDA-DLA), and with fruity, pungent, and bitter attributes. Precision agronomic management based on the needs of the crop itself would avoid unnecessary stress on olive trees and oil damage.
ABSTRACT
The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.
Subject(s)
Neuroprotective Agents , Olive Oil , Phenols , Olive Oil/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Spain , Cyclooxygenase 2/metabolism , Acetylcholinesterase/metabolism , Chromatography, High Pressure Liquid , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/chemistryABSTRACT
Tracing methods of non-European EVOOs commercialized worldwide are becoming crucial for effective authenticity controls. Limited analytical studies of these oils are available on a global scale, similar to those of European EVOOs. We report for the first time the fatty acid concentrations, bulk-oil 2H/1H, 13C/12C, and 18O/16O ratios and fatty acid 13C/12C ratios of 43 authentic monovarietal EVOOs from different geographical regions in Argentina and Uruguay. The samples were obtained from a wide range of latitudes and altitudes along an E-W profile, from lowlands near the Atlantic Ocean to the pre-Andean highlands near the Pacific Ocean. Principal component scores were used to cluster EVOOs into three groups- central-western Argentina, central Argentina, and Uruguay-based on nine stable isotope ratios and the oleic-linoleic acid concentration ratio. The bulk 2H/1H and 18O/16O values and 13C/12C of palmitoleic and linoleic acids provide good tools for differentiating these oils via linear discriminant analysis.
Subject(s)
Fatty Acids , Olive Oil , Uruguay , Argentina , Fatty Acids/chemistry , Fatty Acids/analysis , Olive Oil/chemistry , Discriminant Analysis , Carbon Isotopes/analysisABSTRACT
The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: ⢠The NEs showed physicochemical characteristics suitable for future clinical trials. ⢠The NEs showed a synergistic/additive profile, when associated with ceftazidime. ⢠The NEs inhibited biofilm formation of clinical isolates.
Subject(s)
Anti-Infective Agents , Curcumin , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Olive Oil/pharmacology , Gram-Positive Bacteria , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity TestsABSTRACT
Olive oil, as well as by-products and waste that are left after production, particularly olive pomace and olive leaf, have been extensively researched as sources of phenolic compounds. These compounds are known for their biological properties and have been associated with the prevention of chronic non-communicable diseases. Metabolomics has been used as a methodological tool to elucidate the molecular mechanisms underlying these properties. The present review explores the health outcomes and changes in endogenous metabolite profiles induced by olive derivatives. A literature search was conducted using the scientific databases Scopus, Web of Science and PubMed, and the selected articles were published between the years 2012 and 2023. The reviewed studies have reported several health benefits of olive derivatives and their phenolic components, including appetite regulation, fewer cardiovascular disorders, and antiproliferative properties. This review also addressed the bioavailability of these compounds, their impact on the microbiota, and described biomarkers of their intake. Therefore, there should be further research using this methodology for a better understanding of the performance and therapeutic potential of olive derivatives.
Subject(s)
Olea , Olive Oil , Phenols/analysis , Outcome Assessment, Health CareABSTRACT
Gestational diabetes mellitus (GDM) increases the risks of maternal, placental, and neonatal complications. Previously, we found that a diet enriched in extra virgin olive oil (EVOO) prevents increased maternal triglyceridemia and placental proinflammatory markers in a cohort of GDM patients. The aim of this work was to evaluate maternal circulating markers of insulin resistance, placental collagen, glycogen and lipid levels, and placental levels of proteins, mRNAs, and a microRNA involved in the endocytic pathway in the same cohort of control women and women with GDM who received or did not receive a diet enriched in EVOO (36 g/day) from weeks 24 to 28 of pregnancy until term. Results: At term, the TG/HDL cholesterol ratio, fatty acid binding protein 4 circulating levels, and maternal BMI were increased in the GDM patients, alterations prevented by the maternal diet enriched in EVOO. Although there were no changes in placental lipid levels and lipid profile, GDM placentas were thicker than controls and showed increased glycogen and collagen content, alterations prevented by the EVOO enriched diet. GDM placentas showed increases in megalin levels, in the expression of several genes involved in the endocytic pathway, and in miR-199, which targets these genes, alterations prevented by the maternal diet enriched in EVOO. Conclusions: We identified novel beneficial effects of an EVOO-enriched diet in GDM women, a diet capable of regulating maternal insulin resistance, the structure and metabolism of the placenta, and the placental endocytic pathway, suggesting effects that may be beneficial for fetal development.
Subject(s)
Diabetes, Gestational , Dietary Fats, Unsaturated , Insulin Resistance , Olea , Pregnancy , Infant, Newborn , Humans , Female , Olive Oil , Placenta , Diet , GlycogenABSTRACT
Extra virgin olive oil (EVOO) and avocado oil (AVO) are recognized for their unique sensory characteristics and bioactive compounds. Declared blends with other vegetable oils are legal, but undeclared mixing is a common type of fraud that can affect product quality and commercialization. In this sense, this study explored strategies to mitigate the influence of lighting in order to make digital image colorimetry (DIC) using a smartphone more robust and reliable for predicting the soybean oil content in EVOO and AVO blends. Calibration models were obtained by multiple linear regression using the images' RGB values. Corrections based on illuminance and white reference were evaluated to mitigate the lightness effect and improve the method's robustness and generalization capability. Lastly, the prediction of the built model from data obtained using a distinct smartphone was assessed. The results showed models with good predictive capacities, R2 > 0.9. Generally, models solely based on GB values showed better predictive performances. The illuminance corrections and blank subtraction improved the predictions of EVOO and AVO samples, respectively, for image acquisition from distinct smartphones and lighting conditions as evaluated by external validation. It was concluded that adequate data preprocessing enables DIC using a smartphone to be a reliable method for analyzing oil blends, minimizing the effects of variability in lighting and imaging conditions and making it a potential technique for oil quality assurance.
ABSTRACT
La composición química del aceite de oliva extra virgen (AOEV) se compone principalmente de triglicéridos, ácidos grasos insaturados como ácido oleico, ácido linoleico y el α-linolénico. También se destacan compuestos fenólicos de tres clases químicas: simples, secoiridoides y lignanos. En la presente revisión se analizó el consumo del AOEV en enfermedades crónicas, ciertos tipos de cáncer y en enfermedades neurodegenerativas. La evidencia muestra que el consumo de entre 8 y 40 g de AOEV diario tiene efectos protectores en enfermedades cardiovasculares, puede evitar la aparición de diabetes tipo 2 y aumentar los niveles de colesterol HDL. Respecto al cáncer, entre los efectos evaluados se destacan los encontrados a partir de los compuestos fenólicos hidroxitirosol (HT) y oleocantal, los que han demostrado un efecto protector en algunos tipos de cáncer como cáncer de piel y de mama. En las enfermedades neurodegenerativas, se observó que el consumo diario de 50 g de AOEV, tiene un efecto inhibidor en la degeneración neuronal atribuido a sus compuestos fenólicos como oleuropeina e HT. Investigaciones a futuro debieran enfocarse en determinar los efectos a largo plazo del consumo de AOEV en las diferentes enfermedades analizadas, para así poder ir estableciendo la "dosis" de AOEV que permita obtener resultados protectores sobre la salud. Además de explorar los efectos de las diferentes variedades de aceitunas (con sus componentes bioactivos particulares) con el fin de establecer los efectos en la salud y enfermedad asociados a variedades específicas.
The chemical composition of extra virgin olive oil (EVOO) is mainly composed of triglycerides, unsaturated fatty acids such as oleic acid, linoleic acid, and α-linolenic acid. Phenolic compounds of three chemical classes are also relevant, such as simple, secoiridoids, and lignans. Here, we review the association between EVOO consumption and chronic diseases, certain types of cancer, and neurodegenerative diseases. Evidence shows that consuming between 8 and 40 g of EVOO / day has protective effects on cardiovascular diseases, can prevent the onset of type 2 diabetes, and increases HDL cholesterol levels. Regarding cancer, phenolic compounds hydroxytyrosol (HT) and oleocanthal have protective effects on some types of cancer, such as skin and breast cancer. Regarding neurodegenerative diseases, daily consumption of phenolic compounds such as oleuperin and hydroxytyrosol and 50 g of EVOO has an inhibitory effect on neuronal degeneration and a protective effect on neuroprotective capacity. Future research should focus on determining the long-term impact of EVOO consumption on different diseases to establish the "dose" of EVOO that will allow health-protective results. It is also necessary to establish the effects of the specific olives (with their particular bioactive components) to establish the different impacts on health and disease associated with olives varieties.
ABSTRACT
The storage conditions are very critical to minimize hydrolytic and oxidative reactions of virgin olive oils (VOOs). These reactions are logically influenced by the composition of the VOO, so that each variety may have a specific behavior. The aim of this study was to evaluate changes in quality parameters and in the phenolic and triterpenic profile of Arauco VOOs, a unique local variety from Argentina, after storage under different conditions. The effects of exposure to light (darkness and light), temperature (24 and 40 °C), packaging material (polyethylene (PET) and dark glass), and headspace (air and N2 atmosphere) were investigated for 76 days. A reduction in total phenolic compounds was observed after storage treatments, but all samples still complied with the EFSA health claim after the different handlings. Overall, the results revealed that the preservation of the oils in PET appears adequate, with improved stability when N2 was used in the headspace, along with darkness and low temperature. The study of phenolic profiles showed that substances previously reported as possible markers of olive oil aging, such as hydroxytyrosol and an isomer of decarboxymethyl oleuropein aglycone, also have a similar behavior during the aging of Arauco variety oil. Interestingly, some evidence was found that another oleuropein-derived compound (oleuropein aglycone isomer 3) could also be used as an aging marker.
ABSTRACT
A protocol was optimized to determine the volatile profile from monovarietal virgin olive oil (VOO) by multiple headspace solid-phase microextraction (MHS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis. For this, a Plackett-Burman (PB) and central composite rotational designs (CCRD) were used to define the best condition of extraction. Moreover, fatty acids profile and principal component analysis (PCA) was used to identify markers among the cultivars. The amount of 0.1 g of sample was enough to express the volatile composition of the olive oils by MHS-SPME. Volatile compounds [nonanal, (Z)-3-Hexen-1-ol, (Z)-3-Hexenyl Acetate, Hexyl Acetate, 3-Methylbutyl Acetate, (E)-2-Hexen-1-ol, (E)-2-Hexenyl Acetate] and fatty acids [C17:1, C18, C18:1, C18:2] were those reported such as the markers in the varieties of olive oils. The PCA analysis allowed the classification of the most representative volatiles and fatty acids for each cultivar. Through two principal components was possible to obtain 81.9% of explanation of the variance of the compounds. The compounds were quantified using a validated method. The MHS-SPME combined with multivariate analysis showed a promising tool to identify markers and for the discrimination of olive oil varieties.
Subject(s)
Solid Phase Microextraction , Volatile Organic Compounds , Solid Phase Microextraction/methods , Olive Oil/chemistry , Brazil , Chemometrics , Volatile Organic Compounds/analysis , Fatty Acids/analysisABSTRACT
Extra virgin olive oil (EVOO) is known for its health benefits, although it provides a minimum amount of n-3 polyunsaturated fatty acids (n-3 PUFA), which play an important role in the human organism. In this study, EVOO was blended with vegetable oils which are rich sources of n-3 PUFA alpha-linolenic acid (ALA) and/or stearidonic acid (SDA) (chia, walnut, linseed and viper's bugloss seed oils). Fatty acid profiles, induction time, and organoleptic characteristics of the resulting blends were assessed. The n-3 PUFA enrichment in the blends was proportional to the degree of blending. Sensory analysis carried out by a trained panel showed that it is possible to enrich EVOO with up to 20% chia, linseed and viper's bugloss seed oil without altering the original organoleptic characteristics of EVOO. However, the induction time of the blends was significantly reduced compared with EVOO even after adding n-3 PUFA in small proportions, meaning that shelf-life time of these blends is much lower than that of EVOO, which should be considered when preparing these products for commercial purposes.
El aceite de oliva extra virgen (AOEV) es ampliamente conocido por sus beneficios para la salud, aunque apenas aporta ácidos grasos poliinsaturados n-3 (AGPI n-3), los cuales juegan un papel importante en el organismo humano. En este estudio se elaboraron mezclas de AOEV con aceites vegetales ricos en ácido alfa-linolénico (ALA) y/o estearidónico (SDA) (chia, nuez, linaza y viborera). Se evaluaron los perfiles de ácidos grasos, tiempos de inducción y características organolépticas de las mezclas resultantes. El enriquecimiento en AGPI n-3 fue proporcional al grado de mezcla. El análisis sensorial llevado a cabo por un panel entrenado mostró que es posible enriquecer AOEV con hasta un 20% de aceite de chia, linaza o viborera sin alterar las características organolépticas originales del AOEV. Sin embargo, los tiempos de inducción de las mezclas fueron significativamente menores que el del AOEV, incluso tras añadir AGPI n-3 en pequeñas proporciones, lo que significa que el tiempo de vida media de las mezclas es mucho menor que el del AOEV. Este hecho debería tenerse en cuenta al preparar las mezclas con propósitos comerciales.
ABSTRACT
Extra virgin olive oil (EVOO) has proved beneficial effects in skin wound healing of chronic lesions; however, the effects of EVOO in acute wounds are not completely understood. This study investigated the effects of short-term and long-term administration of a diet rich in EVOO on acute wound healing. To check this, mice were fed with a diet rich in EVOO for 1 week (short term), 1 month, or 3 months (long term). The control group received a standard diet. Mouse macrophages were treated in vitro with EVOO or hydroxytyrosol (HT), which is the main EVOO polyphenol. Short-term administration of an EVOO rich diet in vivo increased lipid peroxidation and mRNA levels of pro-inflammatory cytokine levels and impaired acute wound closure. In contrast, long-term administration of an EVOO rich diet resulted in increased mRNA levels of anti-inflammatory cytokines and enhanced acute wound closure. In both in vivo and in vitro assays, the administration of EVOO or HT resulted in a predominantly anti-inflammatory macrophage phenotype. In conclusion, a diet rich in EVOO has a positive effect on acute wound healing that is dependent on the duration of EVOO administration. Short-term EVOO diet supplementation increases oxidative damage and pro-inflammatory responses, which impaired acute wound closure. On the other hand, long-term EVOO supplementation reduces oxidative damage and enhances anti-inflammatory responses, which improved acute wound closure. The effects of EVOO on oxidation and inflammation in acute wounds are linked to the EVOO polyphenol HT.
Subject(s)
Oxidative Stress , Wound Healing , Mice , Animals , Olive Oil/pharmacology , Inflammation , Cytokines/metabolism , Polyphenols/pharmacologyABSTRACT
BACKGROUND: Rabbits are sensitive to dietary cholesterol and rapidly develop hypercholesterolemia, leading to prominent subfertility. Sterol regulatory element-binding protein isoform 2 drives the intracellular cholesterol pathway in many tissues, including the testicles. Its abnormal regulation could be the mainly responsible for the failure of suppressing cholesterol synthesis in a cholesterol-enriched environment, ultimately leading to testicular and seminal alterations. However, extra-virgin olive oil consumption has beneficial properties that promote lowering of cholesterol levels, including the recovery of seminal parameters altered under a high-fat diet. OBJECTIVES: Our goal was to investigate the effects of high-fat diet supplementation with extra-virgin olive oil at the molecular level on rabbit testes, by analyzing sterol regulatory element-binding protein isoform 2 protein and its corresponding downstream effectors. MATERIALS AND METHODS: During 12 months, male rabbits were fed a control diet, high-fat diet, or 6-month high-fat diet followed by 6-month high-fat diet plus extra-virgin olive oil. Serum lipids, testosterone levels, bodyweight, and seminal parameters were tested. The mRNA and protein levels of sterol regulatory element-binding protein isoform 2, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and low-density lipoprotein receptor were determined by semi-quantitative polymerase chain reaction and Western blotting techniques. The expression pattern of sterol regulatory element-binding protein isoform 2 protein in the rabbit testicles was studied by indirect immunofluorescence. In addition, testicular cholesterol was detected and quantified by filipin staining and gas chromatography. RESULTS: The data showed that the addition of extra-virgin olive oil to high-fat diet reduced testicular cholesterol levels and recovered the expression of sterol regulatory element-binding protein isoform 2, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and low-density lipoprotein receptor initially altered by the high-fat diet. DISCUSSION AND CONCLUSIONS: The combination of high-fat diet with extra-virgin olive oil encourages testicular recovery by modifying the expression of the enzymes related to intracellular cholesterol management.
Subject(s)
Diet, High-Fat , Testicular Diseases , Humans , Animals , Male , Rabbits , Olive Oil/pharmacology , Diet, High-Fat/adverse effects , Cholesterol , Lipoproteins, LDL , OxidoreductasesABSTRACT
Olive oil has beneficial effects on skin wound healing due to its anti-inflammatory and antioxidant properties; however, the mechanism by which olive oil promotes wound healing is unclear. We evaluated the mechanisms involved in Nrf2 pathway activation by olive oil and its role in cell survival and migration in mouse dermal fibroblasts in a short-term exposition. Our data demonstrated that olive oil and oleic acid promoted reactive oxygen species (ROS) production, while olive oil and hydroxytyrosol stimulated nuclear factor erythroid 2-related factor 2 (Nrf2) activation. Olive oil-mediated ROS production increased nuclear factor kappa B p65 expression, while olive oil-stimulated reactive nitrogen species production augmented the levels of Nrf2. Olive oil augmented cell proliferation, cell migration, and AKT phosphorylation, but decreased apoptotic cell number and cleaved caspase-3 levels. The effect of olive oil on cell migration and protein levels of AKT, BCL-2, and Nrf2 were reversed by an Nrf2 inhibitor. In conclusion, the activation of the Nrf2 pathway by olive oil promotes the survival and migration of dermal fibroblasts that are essential for the resolution of skin wound healing.
Subject(s)
NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Mice , Animals , Olive Oil/pharmacology , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Fibroblasts , Oxidative StressABSTRACT
Abstract Recently exposure of olive trees to many stresses particularly oil varieties led to decline in the olive yield. The target of the study is to improve vegetative growth and increase olive fruits quality as well as the fruit oil % and oil quality by applying chitosan nanoparticles (CHNPs) and N-acetyl thiazolidine 4-carboxylic acid (N-ATCA) under the conditions of Egypt. The experiment was carried out in the seasons of 2021 and 2022 on Arbosana olive trees 8 years old and 4×6 m apart the trees sprayed three times on 15th Sept., 1st Oct. and 15th Oct. with (CHNPs at 500, 1000 and 1500 ppm), (N-ATCA at 50, 100 and 150 ppm) and a combination between them and evaluate the vegetative growth of trees, fruit physiochemical characteristics, and oil properties during both study seasons. The application of CHNPs and N-ATCA and a combination of them led to increasing leaf area, total chlorophyll and proline content also increment fruit weight, flesh weight, oil color and oil % moreover improving the quality of produced oil. The improvement in growth, fruit quality, oil % and oil quality, were associated with increasing concentrations of CHNPs, N-ATCA and a combination of them especially (CHNPs at 1500 ppm + N-ATCA at 100 ppm and CHNPs at 1500 ppm + N-ATCA at 150 ppm). Spraying (CHNPs at 1500 ppm + N-ATCA at 150 ppm) is recommended to improve the tree growth, fruit quality, oil % and quality of Arbosana olive.
Resumo Recentemente, a exposição das oliveiras a muitos estresses, particularmente as variedades de azeite, levou ao declínio no rendimento da azeitona. O objetivo do estudo é melhorar o crescimento vegetativo e aumentar a qualidade dos frutos de oliveira, bem como a % de óleo do fruto e a qualidade do óleo, aplicando nanopartículas de quitosana (CHNPs) e ácido N-acetil tiazolidina 4-carboxílico (N-ATCA) nas condições do Egito. O experimento foi realizado nas temporadas de 2021 e 2022 em oliveiras Arbosana de 8 anos e 4×6 m de distância das árvores pulverizadas três vezes em 15 de setembro, 1º de outubro e 15 de outubro com (CHNPs a 500, 1000 e 1500 ppm), (N-ATCA a 50, 100 e 150 ppm) e uma combinação entre eles e avaliar o crescimento vegetativo das árvores, características físico-químicas dos frutos e propriedades do óleo durante as duas épocas de estudo. A aplicação de CHNPs e N-ATCA e uma combinação deles levou ao aumento da área foliar, teor de clorofila total e prolina, além de incrementar o peso do fruto, peso da polpa, cor do óleo e % de óleo, e melhorou a qualidade do óleo produzido. A melhora no crescimento vegetativo, qualidade da fruta, % de óleo e qualidade do óleo foram associados com concentrações crescentes de CHNPs e N-ATCA e uma combinação deles em especial (CHNPs a 1500 ppm + N-ATCA a 100 ppm e CHNPs a 1500 ppm + N-ATCA a 150 ppm). A pulverização (CHNPs a 1500 ppm + N-ATCA a 150 ppm) é recomendada para melhorar o crescimento das árvores, qualidade dos frutos, % de óleo e qualidade da azeitona Arbosana.
ABSTRACT
O azeite de oliva é amplamente consumido devido às suas propriedades benéficas para a saúde e características sensoriais únicas. A composição química abundante em ácido graxo monoinsaturado, associada ao perfil de compostos fenólicos com importante efeito antioxidante, confere ao azeite de oliva alta estabilidade ao aquecimento. Embora existam muitas evidências sobre a estabilidade térmica do azeite, ainda existem muitas dúvidas, por parte da população, sobre o uso em técnicas culinárias que envolvam calor. O objetivo desse trabalho foi compilar evidências científicas a respeito da influência de técnicas culinárias sobre a estabilidade térmica do azeite de oliva, com vistas a elaborar material informativo, com linguagem adaptada à população em geral, sobre sua utilização na culinária, especialmente em preparações quentes. É de amplo conhecimento na literatura que o azeite de oliva é bastante resistente à cocção, no entanto, temperaturas elevadas, como as empregadas na fritura por imersão, podem levar a diminuição do teor de compostos fenólicos, a depender da quantidade e tipos de fenólicos presentes no azeite. Estudos no contexto da gastronomia molecular também relatam, além da estabilidade térmica, os benefícios da utilização do azeite de oliva na culinária devido às interações químicas entre os compostos do azeite e os compostos do alimento fazendo com que ambos (óleo e alimentos) se beneficiem dos efeitos protetivos desses compostos. Considerando que ainda é muito comum o uso do azeite de oliva apenas para temperar saladas e finalizar pratos, o infográfico elaborado no presente trabalho pode contribuir para apresentar o conteúdo científico sobre o uso do azeite em preparações culinárias quentes de forma simplificada e de fácil compreensão.
Olive oil is widely consumed due to its beneficial health properties and unique sensory characteristics. The chemical composition abundant in monounsaturated fatty acids, associated with a profile of phenolic compounds with important antioxidant effects, gives olive oil high heat stability. Although there is much evidence about the thermal stability of olive oil, there are still many doubts among the population about its use in cooking techniques that involve heat. The objective of this work was to compile scientific evidence about the influence of cooking techniques on the thermal stability of olive oil, in order to elaborate informative material, with language adapted to the general population, about its use in cooking, especially in hot preparations. It is widely known in the literature that olive oil is very resistant to cooking, however, high temperatures, such as those used in deep frying, can lead to a decrease in the content of phenolic compounds, depending on the amount and types of phenolics present in the oil. Studies in the context of molecular gastronomy also report, besides thermal stability, the benefits of using olive oil in cooking due to chemical interactions between the compounds of olive oil and food compounds, so that both (oil and food) benefit from the protective effects of these compounds. Considering that it is still very common to use olive oil only to season salads and finish dishes, the infographic prepared in this work can contribute to present the scientific content about the use of olive oil in hot culinary preparations in a simplified and easy to understand way.
El aceite de oliva es ampliamente consumido por sus propiedades beneficiosas para la salud y sus características sensoriales únicas. La composición química abundante en ácidos grasos monoinsaturados, asociada al perfil de compuestos fenólicos con importante efecto antioxidante, confiere al aceite de oliva una gran estabilidad al calentamiento. Aunque hay muchas evidencias sobre la estabilidad térmica del aceite de oliva, todavía existen muchas dudas entre la población sobre su uso en técnicas culinarias que implican calor. El objetivo de este trabajo fue recopilar evidencias científicas sobre la influencia de las técnicas culinarias en la estabilidad térmica del aceite de oliva, con el fin de elaborar material divulgativo, con lenguaje adaptado a la población general, sobre su uso en cocina, especialmente en preparaciones calientes. Es ampliamente conocido en la literatura que el aceite de oliva es bastante resistente a la cocción, sin embargo, las altas temperaturas, como las empleadas en la fritura por inmersión, pueden llevar a disminuir el contenido de compuestos fenólicos, dependiendo de la cantidad y tipos de fenólicos presentes en el aceite. Los estudios en el contexto de la gastronomía molecular también informan, además de la estabilidad térmica, de los beneficios del uso del aceite de oliva en la cocina debido a las interacciones químicas entre los compuestos del aceite de oliva y los compuestos de los alimentos, de forma que ambos (aceite y alimento) se benefician de los efectos protectores de estos compuestos. Teniendo en cuenta que todavía es muy común el uso del aceite de oliva sólo para aliñar ensaladas y terminar platos, la infografía elaborada en este trabajo puede contribuir a presentar de forma simplificada y fácil de entender el contenido científico sobre el uso del aceite de oliva en preparaciones culinarias calientes.