Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Infect Immun ; 91(1): e0051822, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36533918

ABSTRACT

Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg2+, and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.


Subject(s)
Escherichia coli Proteins , Peptide Hydrolases , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Antimicrobial Peptides , Serine Endopeptidases/genetics , Antimicrobial Cationic Peptides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli Proteins/genetics
2.
FEMS Microbiol Lett ; 369(1)2022 10 26.
Article in English | MEDLINE | ID: mdl-36208952

ABSTRACT

Adherent-invasive Escherichia coli (AIEC) are isolated from inflammatory bowel disease (IBD) patients at a higher rate than from control patients. Using a collection of E. coli strains collected from Crohn's disease (CD), ulcerative colitis (UC), or non-IBD control patients, antibiotic and resistance to the antimicrobial peptides HBD-3 and LL-37 was assessed. Carriage of bacterial-encoded omptin protease genes was assessed by PCR and omptin protease activity was measured using a whole-cell based fluorescence assay. Elevated resistance to antibiotics and host defense peptides in IBD-associated AIEC were observed. IBD-associated strains showed increased (but statistically non-significant) antibiotic resistance. CD-associated strains showed greater (but statistically non-significant) resistance to HBD3-mediated killing while UC-associated strains showed statistically greater resistance to LL-37 mediated killing. High-level resistance to LL-37 was associated with carriage of omptin protease genes and with increased omptin protease activity. Antimicrobial host defense peptide resistance may be an adaptive feature of AIEC leading to enhanced pathogenesis during the initiation or progression of IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Escherichia coli Infections , Inflammatory Bowel Diseases , Humans , Escherichia coli/genetics , Antimicrobial Cationic Peptides/pharmacology , Bacterial Adhesion/genetics , Crohn Disease/pathology , Peptide Hydrolases , Intestinal Mucosa
3.
Biomolecules ; 10(11)2020 11 14.
Article in English | MEDLINE | ID: mdl-33202679

ABSTRACT

The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.


Subject(s)
Plasminogen Activators/metabolism , Protein Interaction Maps/physiology , Yersinia pestis/metabolism , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Humans , Plague/genetics , Plague/metabolism , Plague/prevention & control , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Plague Vaccine/metabolism , Plasminogen Activators/chemistry , Plasminogen Activators/genetics , Point Mutation/physiology , Protein Structure, Secondary , Yersinia pestis/classification , Yersinia pestis/genetics
4.
Biomolecules ; 10(6)2020 06 18.
Article in English | MEDLINE | ID: mdl-32570704

ABSTRACT

Outer membrane protease (OmpT) is a 33.5 kDa aspartyl protease that cleaves at dibasic sites and is thought to function as a defense mechanism for E. coli against cationic antimicrobial peptides secreted by the host immune system. Despite carrying three dibasic sites in its own sequence, there is no report of OmpT autoproteolysis in vivo. However, recombinant OmpT expressed in vitro as inclusion bodies has been reported to undergo autoproteolysis during the refolding step, thus resulting in an inactive protease. In this study, we monitor and compare levels of in vitro autoproteolysis of folded and unfolded OmpT and examine the role of lipopolysaccharide (LPS) in autoproteolysis. SDS-PAGE data indicate that it is only the unfolded OmpT that undergoes autoproteolysis while the folded OmpT remains protected and resistant to autoproteolysis. This selective susceptibility to autoproteolysis is intriguing. Previous studies suggest that LPS, a co-factor necessary for OmpT activity, may play a protective role in preventing autoproteolysis. However, data presented here confirm that LPS plays no such protective role in the case of unfolded OmpT. Furthermore, OmpT mutants designed to prevent LPS from binding to its putative LPS-binding motif still exhibited excellent protease activity, suggesting that the putative LPS-binding motif is of less importance for OmpT's activity than previously proposed.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Lipopolysaccharides/metabolism , Peptide Hydrolases/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/cytology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Lipopolysaccharides/chemistry , Models, Molecular , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Protein Refolding , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Vaccines (Basel) ; 7(2)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974891

ABSTRACT

Omptins represent a family of proteases commonly found in various Gram-negative pathogens. These proteins play an important role in host-pathogen interaction and have been recognized as key virulence factors, highlighting the possibility of developing an omptin-based broad-spectrum vaccine. The prototypical omptin, His-tagged recombinant Pla, was used as a model target antigen. In total, 46 linear and 24 conformational epitopes for the omptin family were predicted by the use of ElliPro service. Among these we selected highly conserved, antigenic, non-allergenic, and immunogenic B-cell epitopes. Five epitopes (2, 6, 8, 10, and 11 corresponding to Pla regions 52-60, 146-150, 231-234, 286-295, and 306-311, respectively) could be the first choice for the development of the new generation of target-peptide-based vaccine against plague. The partial residues of omptin epitopes 6, 8, and 10 (regions 136-145, 227-230, and 274-285) could be promising targets for the multi-pathogen vaccine against a group of enterobacterial infections. The comparative analysis and 3D modeling of amino acid sequences of several omptin family proteases, such as Pla (Yersinia pestis), PgtE (Salmonella enterica), SopA (Shigella flexneri), OmpT, and OmpP (Escherichia coli), confirmed their high cross-homology with respect to the identified epitope clusters and possible involvement of individual epitopes in host-pathogen interaction.

6.
Front Microbiol ; 6: 63, 2015.
Article in English | MEDLINE | ID: mdl-25705210

ABSTRACT

The virulence factor PgtE is an outer membrane protease (omptin) of the zoonotic pathogen Salmonella enterica that causes diseases ranging from gastroenteritis to severe enteric fever. It is surface exposed in bacteria that have a short-chain, i.e., rough LPS, as observed e.g., in bacteria residing inside macrophages or just emerging from them. We investigated whether PgtE cleaves the complement factors B (B) and H (H), key proteins controlling formation and inactivation of the complement protein C3b and thereby the activity of the complement system. S. enterica serovar Typhimurium or omptin-expressing recombinant E. coli bacteria were incubated with purified human complement proteins or recombinant H fragments. PgtE cleaved both B and H, whereas its close homolog Pla of Yersinia pestis cleaved only H. H was cleaved at both N- and C-termini, while the central region resisted proteolysis. Because of multiple effects of PgtE on complement components (cleavage of C3, C3b, B, and H) we assessed its effect on the opsonophagocytosis of Salmonella. In human serum, C3 cleavage was dependent on proteolytically active PgtE. Human neutrophils interacted less with serum-opsonized FITC-stained S. enterica 14028R than with the isogenic ΔpgtE strain, as analyzed by flow cytometry. In conclusion, cleavage of B and H by PgtE, together with C3 cleavage, affects the C3-mediated recognition of S. enterica by human neutrophils, thus thwarting the immune protection against Salmonella.

SELECTION OF CITATIONS
SEARCH DETAIL