Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Biomolecules ; 13(2)2023 02 04.
Article in English | MEDLINE | ID: mdl-36830662

ABSTRACT

Ocular coloboma (OC) is a failure of complete optic fissure closure during embryonic development and presents as a tissue defect along the proximal-distal axis of the ventral eye. It is classed as part of the clinical spectrum of structural eye malformations with microphthalmia and anophthalmia, collectively abbreviated to MAC. Despite deliberate attempts to identify causative variants in MAC, many patients remain without a genetic diagnosis. To reveal potential candidate genes, we utilised transcriptomes experimentally generated from embryonic eye tissues derived from humans, mice, zebrafish, and chicken at stages coincident with optic fissure closure. Our in-silico analyses found 10 genes with optic fissure-specific enriched expression: ALDH1A3, BMPR1B, EMX2, EPHB3, NID1, NTN1, PAX2, SMOC1, TENM3, and VAX1. In situ hybridization revealed that all 10 genes were broadly expressed ventrally in the developing eye but that only PAX2 and NTN1 were expressed in cells at the edges of the optic fissure margin. Of these conserved optic fissure genes, EMX2, NID1, and EPHB3 have not previously been associated with human MAC cases. Targeted genetic manipulation in zebrafish embryos using CRISPR/Cas9 caused the developmental MAC phenotype for emx2 and ephb3. We analysed available whole genome sequencing datasets from MAC patients and identified a range of variants with plausible causality. In combination, our data suggest that expression of genes involved in ventral eye development is conserved across a range of vertebrate species and that EMX2, NID1, and EPHB3 are candidate loci that warrant further functional analysis in the context of MAC and should be considered for sequencing in cohorts of patients with structural eye malformations.


Subject(s)
Coloboma , Eye Abnormalities , Neuropeptides , Female , Pregnancy , Humans , Animals , Mice , Coloboma/genetics , Coloboma/metabolism , Eye/metabolism , Zebrafish/genetics , Gene Expression Profiling , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuropeptides/metabolism , Homeodomain Proteins/metabolism
2.
Dev Dyn ; 252(4): 495-509, 2023 04.
Article in English | MEDLINE | ID: mdl-36576487

ABSTRACT

BACKGROUND: RERE is a highly conserved transcriptional co-regulator that is associated with a human neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH, OMIM: 616975). RESULTS: We show that the zebrafish rerea mutant (babyface) robustly recapitulates optic fissure closure defects resulting from loss of RERE function, as observed in humans. These defects result from expansion of proximal retinal optic stalk (OS) and reduced expression of some of the ventral retinal fate genes due to deregulated protein signaling. Using zebrafish and cell-based assays, we determined that NEDBEH-associated human RERE variants function as hypomorphs in their ability to repress shh signaling and some exhibit abnormal nuclear localization. Inhibiting shh signaling by the protein inhibitor HPI-1 rescues coloboma, confirming our observation that coloboma in rerea mutants is indeed due to deregulation of shh signaling. CONCLUSIONS: Zebrafish rerea mutants exhibit OS and optic fissure closure defects. The optic fissure closure defect was rescued by an shh signaling inhibitor, suggesting that this defect could arise due to deregulated shh signaling.


Subject(s)
Coloboma , Zebrafish Proteins , Zebrafish , Animals , Humans , Carrier Proteins/metabolism , Coloboma/genetics , Coloboma/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Retina/metabolism , Signal Transduction/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Ophthalmic Genet ; 43(4): 513-517, 2022 08.
Article in English | MEDLINE | ID: mdl-35318877

ABSTRACT

BACKGROUND: Uveal colobomata are eye defects that result from failure of the optic fissure of the neuroectoderm-derived optic cup to close between weeks 5-7 of fetal life. Mutations in YAP1 have previously been linked to uveal coloboma. We present the clinical features and genetic basis of a one-year-old male with bilateral uveal colobomata. MATERIALS AND METHODS: Clinical features were gathered from an age-appropriate evaluation and retrospectively from clinical records. DNA samples were collected from the proband, his uncle (who also had coloboma), both parents, and one sibling. Whole-genome sequencing of the coding regions and intron-exon boundaries confirmed a mutation in the proband. These genetic findings were verified using the Sanger method of DNA sequencing. RESULTS: The proband is a male with congenital bilateral colobomata (iris/retina/nerve), reduced vision, nystagmus with null point, bilateral microcornea, right microphthalmia, possible mild right hemifacial microsomia, a tubular nose, possible spina bifida occulta, and astigmatism. Whole-genome sequencing confirmed a heterozygous YAP1 frameshift mutation NM_001130145.3:c.178dupG p.(Asp60GlyfsTer52) in the proband. This mutation was absent in all other tested family members. CONCLUSIONS: We report a de novo mutation in YAP1 that likely results in nonsense-mediated decay. Given the association with YAP1 haploinsufficiency and colobomatous microphthalmia, this novel variant provides a molecular diagnosis for the proband. Further insight into YAP1 mutations may have implications in the prevention/treatment of uveal coloboma and other syndromic disorders.


Subject(s)
Coloboma , Microphthalmos , Coloboma/complications , Coloboma/genetics , Frameshift Mutation , Humans , Infant , Male , Microphthalmos/complications , Microphthalmos/genetics , Mutation , Pedigree , Retrospective Studies , YAP-Signaling Proteins
4.
Dev Dyn ; 251(4): 625-644, 2022 04.
Article in English | MEDLINE | ID: mdl-34535934

ABSTRACT

BACKGROUND: Pax2 is required for optic fissure development in many organisms, including humans and zebrafish. Zebrafish loss-of-function mutations in pax2a display coloboma, yet the etiology of the morphogenetic defects is unclear. Further, pax2 is duplicated in zebrafish, and a role for pax2b in optic fissure development has not been examined. RESULTS: Using a combination of imaging and molecular genetics, we interrogated a potential role for pax2b and examined how loss of pax2 affects optic fissure development. Although optic fissure formation appears normal in pax2 mutants, an endothelial-specific subset of periocular mesenchyme (POM) fails to initially localize within the optic fissure, yet both neural crest and endothelial-derived POM ectopically accumulate at later stages in pax2a and pax2a; pax2b mutants. Apoptosis is not up-regulated within the optic fissure in pax2 mutants, yet cell death is increased in tissues outside of the optic fissure, and when apoptosis is inhibited, coloboma is partially rescued. In contrast to pax2a, loss of pax2b does not appear to affect optic fissure morphogenesis. CONCLUSIONS: Our results suggest that pax2a, but not pax2b, supports cell survival outside of the optic fissure and POM abundance within it to facilitate optic fissure closure.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Cell Survival/genetics , Eye , Mesoderm/metabolism , Morphogenesis/genetics , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Development ; 147(24)2020 12 28.
Article in English | MEDLINE | ID: mdl-33158926

ABSTRACT

Ocular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis. Gene set enrichment patterns showed conservation between species. Expression of genes involved in epithelial-to-mesenchymal transition was transiently enriched in the human fissure margins during OFC at days 41-44. Electron microscopy and histological analyses showed that cells transiently delaminate at the point of closure, and produce cytoplasmic protrusions, before rearranging to form two continuous epithelial layers. Apoptosis was not observed in the human fissure margins. These analyses support a model of human OFC in which epithelial cells at the fissure margins undergo a transient epithelial-to-mesenchymal-like transition, facilitating cell rearrangement to form a complete optic cup.


Subject(s)
Coloboma/genetics , Eye Abnormalities/genetics , Eye/ultrastructure , Optic Disk/ultrastructure , Animals , Apoptosis/genetics , Base Sequence/genetics , Coloboma/pathology , Epithelial-Mesenchymal Transition/genetics , Eye/pathology , Eye Abnormalities/pathology , Gene Expression Regulation, Developmental , Humans , Laser Capture Microdissection , Mice , Microscopy, Electron
6.
BMC Ophthalmol ; 20(1): 418, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33076860

ABSTRACT

BACKGROUND: Ocular coloboma is an excavation of ocular structures that occurs due to abnormal fusion of the embryonic optic fissure. Further, cleft lip/palate (CL/P), a congenital midline abnormality, is caused by a defect in the fusion of the frontonasal, maxillary, and mandibular prominences. No study has reported the association between these two phenotypes in the absence of other systemic abnormalities. We present a case of ocular coloboma along with CL/P and without other neurological abnormalities. CASE PRESENTATION: A 5-year-old Asian boy presented with decreased visual acuity in his right eye. Physical examination revealed no abnormal findings except CL/P, which was surgically corrected at the age of 9 months. Best-corrected visual acuity was 20/60 in the right eye and 20/25 in the left eye. Anterior segment examination revealed iris coloboma in the inferior quadrant of his right eye as well as a large inferonasal optic disc and chorioretinal coloboma in the same eye. He was prescribed glasses based on his cycloplegic refractive errors and part-time occlusion of the left eye was recommended. After 3 months, best-corrected visual acuity improved to 20/30 in the right eye. CONCLUSION: The association of ocular coloboma should be kept in mind when encountering a patient with CL/P without other neurological or systemic abnormalities.


Subject(s)
Cleft Lip , Cleft Palate , Coloboma , Optic Disk , Child, Preschool , Cleft Lip/complications , Cleft Palate/complications , Coloboma/complications , Coloboma/diagnosis , Humans , Infant , Male
7.
Int J Mol Sci ; 21(8)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316164

ABSTRACT

Colobomata, persistent optic fissures, frequently cause congenital blindness. Here, we focused on optic fissure fusion using in vivo time-lapse imaging in zebrafish. We identified the fusion initiating cells, which we termed "pioneer cells." Based on morphology, localization, and downregulation of the neuroretinal (NR) precursor marker rx2, these cells could be considered as retinal pigment epithelial (RPE) progenitors. Notably, pioneer cells regain rx2 expression and integrate into the NR after fusion, indicating that they do not belong to the pool of RPE progenitors, supported by the lack of RPE marker expression in pioneer cells. They establish the first cellular contact between the margins in the proximal fissure region and separate the hyaloid artery and vein. After initiation, the fusion site is progressing distally, increasing the distance between the hyaloid artery and vein. A timed BMP (Bone Morphogenetic Protein) induction, resulting in coloboma, did not alter the morphology of the fissure margins, but it did affect the expression of NR and RPE markers within the margins. In addition, it resulted in a persisting basal lamina and persisting remnants of periocular mesenchyme and hyaloid vasculature within the fissure, supporting the necessity of BMP antagonism within the fissure margins. The hampered fissure fusion had severe effects on the vasculature of the eye.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified/metabolism , Basement Membrane/metabolism , Blood Vessels/anatomy & histology , Bone Morphogenetic Proteins/genetics , Coloboma/metabolism , Coloboma/pathology , Optic Disk/abnormalities , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Time-Lapse Imaging , Zebrafish Proteins/genetics
8.
Front Cell Dev Biol ; 8: 620774, 2020.
Article in English | MEDLINE | ID: mdl-33505973

ABSTRACT

A key embryonic process that occurs early in ocular development is optic fissure closure (OFC). This fusion process closes the ventral optic fissure and completes the circumferential continuity of the 3-dimensional eye. It is defined by the coming together and fusion of opposing neuroepithelia along the entire proximal-distal axis of the ventral optic cup, involving future neural retina, retinal pigment epithelium (RPE), optic nerve, ciliary body, and iris. Once these have occurred, cells within the fused seam differentiate into components of the functioning visual system. Correct development and progression of OFC, and the continued integrity of the fused margin along this axis, are important for the overall structure of the eye. Failure of OFC results in ocular coloboma-a significant cause of childhood visual impairment that can be associated with several complex ocular phenotypes including microphthalmia and anterior segment dysgenesis. Despite a large number of genes identified, the exact pathways that definitively mediate fusion have not yet been found, reflecting both the biological complexity and genetic heterogeneity of the process. This review will highlight how recent developmental studies have become focused specifically on the epithelial fusion aspects of OFC, applying a range of model organisms (spanning fish, avian, and mammalian species) and utilizing emerging high-resolution live-imaging technologies, transgenic fluorescent models, and unbiased transcriptomic analyses of segmentally-dissected fissure tissue. Key aspects of the fusion process are discussed, including basement membrane dynamics, unique cell behaviors, and the identities and fates of the cells that mediate fusion. These will be set in the context of what is now known, and how these point the way to new avenues of research.

9.
Biol Open ; 8(6)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31189662

ABSTRACT

Optic fissure fusion is a critical event during retinal development. Failure of fusion leads to coloboma, a potentially blinding congenital disorder. Pax2a is an essential regulator of optic fissure fusion and the target of numerous morphogenetic pathways. In our current study, we examined the negative regulator of pax2a expression, Nz2, and the mechanism modulating Nlz2 activity during optic fissure fusion. Upregulation of Nlz2 in zebrafish embryos resulted in downregulation of pax2a expression and fissure fusion failure. Conversely, upregulation of pax2a expression also led to fissure fusion failure suggesting Pax2 levels require modulation to ensure proper fusion. Interestingly, we discovered Nlz2 is a target of the E3 ubiquitin ligase Siah. We show that zebrafish siah1 expression is regulated by Hedgehog signaling and that Siah1 can directly target Nlz2 for proteasomal degradation, in turn regulating the levels of pax2a mRNA. Finally, we show that both activation and inhibition of Siah activity leads to failure of optic fissure fusion dependent on ubiquitin-mediated proteasomal degradation of Nlz2. In conclusion, we outline a novel, proteasome-mediated degradation regulatory pathway involved in optic fissure fusion.

10.
Elife ; 82019 06 04.
Article in English | MEDLINE | ID: mdl-31162046

ABSTRACT

Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research.


Subject(s)
Coloboma/genetics , Evolution, Molecular , Eye/growth & development , Netrin-1/genetics , Animals , Apoptosis/genetics , Chick Embryo , Chickens , Coloboma/pathology , Conserved Sequence/genetics , Epithelial Cells/metabolism , Eye/pathology , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Palate/growth & development , Palate/pathology , Zebrafish/genetics , Zebrafish/growth & development
11.
Open Biol ; 9(2): 180179, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30958096

ABSTRACT

Optic cup morphogenesis is an intricate process. Especially, the formation of the optic fissure is not well understood. Persisting optic fissures, termed coloboma, are frequent causes for congenital blindness. Even though the defective fusion of the fissure margins is the most acknowledged reason for coloboma, highly variable morphologies of coloboma phenotypes argue for a diverse set of underlying pathomechanisms. Here, we investigate optic fissure morphogenesis in zebrafish to identify potential morphogenetic defects resulting in coloboma. We show that the formation of the optic fissure depends on tissue flow movements, integrated into the bilateral distal epithelial flow forming the optic cup. On the temporal side, the distal flow translates into a ventral perpendicular flow, shaping the temporal fissure margin. On the nasal side, however, the distal flow is complemented by tissue derived from the optic stalk, shaping the nasal fissure margin. Notably, a distinct population of TGFß-signalling positive cells is translocated from the optic stalk into both fissure margins. Furthermore, we show that induced BMP signalling as well as Wnt-signalling inhibition result in morphogenetic defects of the optic fissure. Our data also indicate that morphogenesis is crucial for a proper positioning of pre-specified dorsal-ventral optic cup domains.


Subject(s)
Morphogenesis , Optic Disk/metabolism , Wnt Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Coloboma/embryology , Coloboma/genetics , Coloboma/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , In Situ Hybridization/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Optic Disk/embryology , Time-Lapse Imaging/methods , Wnt Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
12.
Dev Biol ; 452(1): 43-54, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31034836

ABSTRACT

Fusion of the optic fissure is necessary to complete retinal morphogenesis and ensure proper function of the optic stalk. Failure of this event leads to congenital coloboma, one of the leading causes of pediatric blindness. Mechanistically it is widely accepted that the basement membrane (BM) surrounding the maturing retina needs to be remodeled within the fissure in order to facilitate subsequent epithelial sheet fusion. However, the mechanism driving BM remodeling has yet to be elucidated. As a first step to understanding this critical molecular event we comprehensively characterized the core composition of optic fissure BMs in the zebrafish embryos. Zebrafish optic fissure BMs were found to express laminin a1, a4, b1a, c1 and c3, nidogen 1a, 1b and 2a, collagen IV a1 and a2 as well as perlecan. Furthermore, we observed that laminin, perlecan and collagen IV expression persists in the fissure during fusion, up to 56 hpf, while nidogen expression is downregulated upon initiation of fusion, at 36 hpf. Using immunohistochemistry we also show that nidogen is removed from the BM prior to that of laminin, indicating that remodeling of the BM is an ordered event. Lastly, we characterized retinal morphogenesis in the absence of nidogen function and documented retinal malformation similar to what is observed in laminin mutants. Taken together, we propose a model of BM remodeling where nidogen acts as a linchpin during initiation of optic fissure fusion.


Subject(s)
Basement Membrane/embryology , Gene Expression Regulation, Developmental , Membrane Glycoproteins/metabolism , Retina/embryology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Membrane Glycoproteins/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
13.
Semin Cell Dev Biol ; 91: 55-65, 2019 07.
Article in English | MEDLINE | ID: mdl-29198497

ABSTRACT

Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.


Subject(s)
Coloboma/embryology , Eye/embryology , Optic Disk/embryology , Vision Disorders/embryology , Animals , Coloboma/genetics , Eye/metabolism , Gene Expression Regulation, Developmental , Humans , Morphogenesis/genetics , Optic Disk/metabolism , Signal Transduction/genetics , Vision Disorders/genetics
14.
Dev Biol ; 440(2): 137-151, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29803644

ABSTRACT

Defects in choroid fissure (CF) formation and closure lead to coloboma, a major cause of childhood blindness. Despite genetic advances, the cellular defects underlying coloboma remain poorly elucidated due to our limited understanding of normal CF morphogenesis. We address this deficit by conducting high-resolution spatio-temporal analyses of CF formation and closure in the chick, mouse and fish. We show that a small ventral midline invagination initiates CF formation in the medial-proximal optic cup, subsequently extending it dorsally toward the lens, and proximally into the optic stalk. Unlike previously supposed, the optic disc does not form solely as a result of this invagination. Morphogenetic events that alter the shape of the proximal optic cup also direct clusters of outer layer and optic stalk cells to form dorsal optic disc. A cross-species comparison suggests that CF closure can be accomplished by breaking down basement membranes (BM) along the CF margins, and by establishing BM continuity along the dorsal and ventral surfaces of the CF. CF closure is subsequently accomplished via two distinct mechanisms: tissue fusion or the intercalation of various tissues into the inter-CF space. We identify several novel cell behaviors that underlie CF fusion, many of which involve remodeling of the retinal epithelium. In addition to BM disruption, these include NCAD downregulation along the SOX2+ retinal CF margin, and the protrusion or movement of partially polarized retinal cells into the inter-CF space to mediate fusion. Proximally, the inter-CF space does not fuse or narrow and is instead loosely packed with migrating SOX2+/PAX2+/Vimentin+ astrocytes until it is closed by the outgoing optic nerve. Taken together, our results highlight distinct proximal-distal differences in CF morphogenesis and closure and establish detailed cellular models that can be utilized for understanding the genetic bases of coloboma.


Subject(s)
Choroid/embryology , Coloboma/embryology , Coloboma/physiopathology , Animals , Chick Embryo , Choroid/physiology , Coloboma/genetics , Eye/embryology , Mice/embryology , Morphogenesis/physiology , Optic Disk/embryology , Retina/embryology , Spatio-Temporal Analysis , Zebrafish/embryology
15.
Open Biol ; 8(3)2018 03.
Article in English | MEDLINE | ID: mdl-29593116

ABSTRACT

The optic fissure is a transient gap in the developing vertebrate eye, which must be closed as development proceeds. A persisting optic fissure, coloboma, is a major cause for blindness in children. Although many genes have been linked to coloboma, the process of optic fissure fusion is still little appreciated, especially on a molecular level. We identified a coloboma in mice with a targeted inactivation of transforming growth factor ß2 (TGFß2). Notably, here the optic fissure margins must have touched, however failed to fuse. Transcriptomic analyses indicated an effect on remodelling of the extracellular matrix (ECM) as an underlying mechanism. TGFß signalling is well known for its effect on ECM remodelling, but it is at the same time often inhibited by bone morphogenetic protein (BMP) signalling. Notably, we also identified two BMP antagonists among the downregulated genes. For further functional analyses we made use of zebrafish, in which we found TGFß ligands expressed in the developing eye, and the ligand binding receptor in the optic fissure margins where we also found active TGFß signalling and, notably, also gremlin 2b (grem2b) and follistatin a (fsta), homologues of the regulated BMP antagonists. We hypothesized that TGFß is locally inducing expression of BMP antagonists within the margins to relieve the inhibition from its regulatory capacity regarding ECM remodelling. We tested our hypothesis and found that induced BMP expression is sufficient to inhibit optic fissure fusion, resulting in coloboma. Our findings can likely be applied also to other fusion processes, especially when TGFß signalling or BMP antagonism is involved, as in fusion processes during orofacial development.


Subject(s)
Bone Morphogenetic Proteins/antagonists & inhibitors , Coloboma/genetics , Gene Expression Profiling/methods , Transforming Growth Factor beta2/genetics , Animals , Coloboma/drug therapy , Disease Models, Animal , Extracellular Matrix/metabolism , Follistatin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Signal Transduction , Zebrafish/metabolism , Zebrafish Proteins/metabolism
16.
Front Cell Neurosci ; 12: 42, 2018.
Article in English | MEDLINE | ID: mdl-29515375

ABSTRACT

Coloboma is a defect in the morphogenesis of the eye that is a consequence of failure of choroid fissure fusion. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the cellular mechanisms that regulate choroid fissure closure. Using high-resolution confocal imaging of the zebrafish optic cup, we find that apico-basal polarity is re-modeled in cells lining the fissure in proximal to distal and inner to outer gradients during fusion. This process is accompanied by cell proliferation, displacement of vasculature, and contact between cells lining the choroid fissure and periocular mesenchyme (POM). To investigate the role of POM cells in closure of the fissure, we transplanted optic vesicles onto the yolk, allowing them to develop in a situation where they are depleted of POM. The choroid fissure forms normally in ectopic eyes but fusion fails in this condition, despite timely apposition of the nasal and temporal lips of the retina. This study resolves some of the cell behaviors underlying choroid fissure fusion and supports a role for POM in choroid fissure fusion.

17.
J Neurosci ; 37(33): 7975-7993, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28729440

ABSTRACT

During vertebrate eye morphogenesis, a transient fissure forms at its inferior part, known as the optic fissure. This will gradually close, giving rise to a healthy, spherical optic cup. Failure of the optic fissure to close gives rise to an ocular disorder known as coloboma. During this developmental process, Foxg1 is expressed in the optic neuroepithelium, with highest levels of expression in the nasal optic stalk. Foxg1-/- mutant mice have microphthalmic eyes with a large ventral coloboma. We found Wnt8b expression upregulated in the Foxg1-/- optic stalk and hypothesized that, similar to what is observed in telencephalic development, Foxg1 directs development of the optic neuroepithelium through transcriptional suppression of Wnt8b To test this, we generated Foxg1-/-;Wnt8b-/- double mutants of either sex and found that the morphology of the optic cup and stalk and the closure of the optic fissure were substantially rescued in these embryos. This rescue correlates with restored Pax2 expression in the anterior tip of the optic fissure. In addition, although we do not find evidence implicating altered proliferation in the rescue, we observe a significant increase in apoptotic cell density in Foxg1-/-;Wnt8b-/- double mutants compared with the Foxg1-/- single mutant. Upregulation of Wnt/ß-catenin target molecules in the optic cup and stalk may underlie the molecular and morphological defects in the Foxg1-/- mutant. Our results show that proper optic fissure closure relies on Wnt8b suppression by Foxg1 in the nasal optic stalk to maintain balanced apoptosis and Pax2 expression in the nasal and temporal edges of the fissure.SIGNIFICANCE STATEMENT Coloboma is an ocular disorder that may result in a loss of visual acuity and accounts for ∼10% of childhood blindness. It results from errors in the sealing of the optic fissure (OF), a transient structure at the bottom of the eye. Here, we investigate the colobomatous phenotype of the Foxg1-/- mutant mouse. We identify upregulated expression of Wnt8b in the optic stalk of Foxg1-/- mutants before OF closure initiates. Foxg1-/-;Wnt8b-/- double mutants show a substantial rescue of the Foxg1-/- coloboma phenotype, which correlates with a rescue in molecular and cellular defects of Foxg1-/- mutants. Our results unravel a new role of Foxg1 in promoting OF closure providing additional knowledge about the molecules and cellular mechanisms underlying coloboma formation.


Subject(s)
Forkhead Transcription Factors/deficiency , Nerve Tissue Proteins/deficiency , Optic Disk/embryology , Optic Disk/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/biosynthesis , Animals , Female , Forkhead Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Nerve Tissue Proteins/genetics , Pregnancy , Transcription Factors/deficiency , Transcription Factors/drug effects , Wnt Proteins/genetics
18.
Development ; 143(3): 461-72, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26839344

ABSTRACT

The development of complex organs such as the eye requires a delicate and coordinated balance of cell division and cell death. Although apoptosis is prevalent in the proximoventral optic cup, the precise role it plays in eye development needs to be investigated further. In this study, we show that reduced apoptosis in the proximoventral optic cup prevents closure of the optic fissure. We also show that expression of ephrin A5 (Efna5) partially overlaps with Eph receptor B2 (Ephb2) expression in the proximoventral optic cup and that binding of EphB2 to ephrin A5 induces a sustained activation of JNK. This prolonged JNK signal promotes apoptosis and prevents cell proliferation. Thus, we propose that the unique cross-subclass interaction of EphB2 with ephrin A5 has evolved to function upstream of JNK signaling for the purpose of maintaining an adequate pool of progenitor cells to ensure proper closure of the optic fissure.


Subject(s)
Ephrin-A5/metabolism , MAP Kinase Signaling System , Optic Disk/embryology , Optic Disk/metabolism , Receptor, EphB2/metabolism , Animals , Apoptosis/drug effects , Cell Membrane/metabolism , Cell Proliferation/drug effects , Embryo, Mammalian/metabolism , Enzyme Activation , Ephrin-A5/deficiency , HEK293 Cells , Humans , Mice, Transgenic , Models, Biological , Morphogenesis , Receptor, EphB2/deficiency , Signal Transduction
19.
Elife ; 42015 Feb 24.
Article in English | MEDLINE | ID: mdl-25719386

ABSTRACT

The hemispheric, bi-layered optic cup forms from an oval optic vesicle during early vertebrate eye development through major morphological transformations. The overall basal surface, facing the developing lens, is increasing, while, at the same time, the space basally occupied by individual cells is decreasing. This cannot be explained by the classical view of eye development. Using zebrafish (Danio rerio) as a model, we show that the lens-averted epithelium functions as a reservoir that contributes to the growing neuroretina through epithelial flow around the distal rims of the optic cup. We propose that this flow couples morphogenesis and retinal determination. Our 4D data indicate that future stem cells flow from their origin in the lens-averted domain of the optic vesicle to their destination in the ciliary marginal zone. BMP-mediated inhibition of the flow results in ectopic neuroretina in the RPE domain. Ultimately the ventral fissure fails to close resulting in coloboma.


Subject(s)
Bone Morphogenetic Proteins/physiology , Eye/growth & development , Morphogenesis , Optic Disk/physiology , Animals , Epithelium/physiology , Zebrafish
20.
Mech Dev ; 133: 218-29, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25151399

ABSTRACT

During vertebrate eye development retinal progenitor cells (RPCs) differentiate into all neural cell types of the retina. Retinal ganglion cells (RGCs) represent the first cell type to be generated. For their development, Atoh7, a basic Helix Loop Helix (bHLH) transcription factor is crucial. Atoh7 loss of function results in a massive reduction or even a total loss of RGCs. However, inconsistent results have been obtained in atoh7 gain of function experiments with respect to ganglion cell genesis, implying that the effect of Atoh7 is likely to be dependent on the competence state of the RPC. In this study we addressed the differential susceptibilities of early RPCs to Atoh7 in vivo, using medaka. Unexpectedly, we observed a largely normal development of the dorsal retina, although atoh7 was precociously expressed. However, the development of the retina close to the optic nerve head (part of the ventral retina) was disturbed severely. Photoreceptors were largely absent and the Müller glia cell number was reduced significantly. The majority of cells in this domain were ganglion cells and the abnormal development of this area affected the closure of the optic fissure resulting in coloboma.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Fish Proteins/genetics , Oryzias/embryology , Oryzias/genetics , Retina/embryology , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Count , Cell Differentiation , Coloboma/embryology , Coloboma/genetics , Coloboma/metabolism , Disease , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Oryzias/metabolism , Retina/cytology , Retina/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL