Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Med Image Anal ; 99: 103333, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244795

ABSTRACT

Partially-supervised multi-organ medical image segmentation aims to develop a unified semantic segmentation model by utilizing multiple partially-labeled datasets, with each dataset providing labels for a single class of organs. However, the limited availability of labeled foreground organs and the absence of supervision to distinguish unlabeled foreground organs from the background pose a significant challenge, which leads to a distribution mismatch between labeled and unlabeled pixels. Although existing pseudo-labeling methods can be employed to learn from both labeled and unlabeled pixels, they are prone to performance degradation in this task, as they rely on the assumption that labeled and unlabeled pixels have the same distribution. In this paper, to address the problem of distribution mismatch, we propose a labeled-to-unlabeled distribution alignment (LTUDA) framework that aligns feature distributions and enhances discriminative capability. Specifically, we introduce a cross-set data augmentation strategy, which performs region-level mixing between labeled and unlabeled organs to reduce distribution discrepancy and enrich the training set. Besides, we propose a prototype-based distribution alignment method that implicitly reduces intra-class variation and increases the separation between the unlabeled foreground and background. This can be achieved by encouraging consistency between the outputs of two prototype classifiers and a linear classifier. Extensive experimental results on the AbdomenCT-1K dataset and a union of four benchmark datasets (including LiTS, MSD-Spleen, KiTS, and NIH82) demonstrate that our method outperforms the state-of-the-art partially-supervised methods by a considerable margin, and even surpasses the fully-supervised methods. The source code is publicly available at LTUDA.

2.
Comput Methods Programs Biomed ; 255: 108367, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39141962

ABSTRACT

Medical image segmentation has made remarkable progress with advances in deep learning technology, depending on the quality and quantity of labeled data. Although various deep learning model structures and training methods have been proposed and high performance has been published, limitations such as inter-class accuracy bias exist in actual clinical applications, especially due to the significant lack of small object performance in multi-organ segmentation tasks. In this paper, we propose an uncertainty-based contrastive learning technique, namely UncerNCE, with an optimal hybrid architecture for high classification and segmentation performance of small organs. Our backbone architecture adopts a hybrid network that employs both convolutional and transformer layers, which have demonstrated remarkable performance in recent years. The key proposal of this study addresses the multi-class accuracy bias and resolves a common tradeoff in existing studies between segmenting regions of small objects and reducing overall noise (i.e., false positives). Uncertainty based contrastive learning based on the proposed hybrid network performs spotlight learning on selected regions based on uncertainty and achieved accurate segmentation for all classes while suppressing noise. Comparison with state-of-the-art techniques demonstrates the superiority of our results on BTCV and 1K data.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Uncertainty , Image Processing, Computer-Assisted/methods , Algorithms , Diagnostic Imaging , Machine Learning
3.
Med Phys ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167059

ABSTRACT

BACKGROUND: Multi-organ segmentation is a critical task in medical imaging, with wide-ranging applications in both clinical practice and research. Accurate delineation of organs from high-resolution 3D medical images, such as CT scans, is essential for radiation therapy planning, enhancing treatment outcomes, and minimizing radiation toxicity risks. Additionally, it plays a pivotal role in quantitative image analysis, supporting various medical research studies. Despite its significance, manual segmentation of multiple organs from 3D images is labor-intensive and prone to low reproducibility due to high interoperator variability. Recent advancements in deep learning have led to several automated segmentation methods, yet many rely heavily on labeled data and human anatomy expertise. PURPOSE: In this study, our primary objective is to address the limitations of existing semi-supervised learning (SSL) methods for abdominal multi-organ segmentation. We aim to introduce a novel SSL approach that leverages unlabeled data to enhance the performance of deep neural networks in segmenting abdominal organs. Specifically, we propose a method that incorporates a redrawing network into the segmentation process to correct errors and improve accuracy. METHODS: Our proposed method comprises three interconnected neural networks: a segmentation network for image segmentation, a teacher network for consistency regularization, and a redrawing network for object redrawing. During training, the segmentation network undergoes two rounds of optimization: basic training and readjustment. We adopt the Mean-Teacher model as our baseline SSL approach, utilizing labeled and unlabeled data. However, recognizing significant errors in abdominal multi-organ segmentation using this method alone, we introduce the redrawing network to generate redrawn images based on CT scans, preserving original anatomical information. Our approach is grounded in the generative process hypothesis, encompassing segmentation, drawing, and assembling stages. Correct segmentation is crucial for generating accurate images. In the basic training phase, the segmentation network is trained using both labeled and unlabeled data, incorporating consistency learning to ensure consistent predictions before and after perturbations. The readjustment phase focuses on reducing segmentation errors by optimizing the segmentation network parameters based on the differences between redrawn and original CT images. RESULTS: We evaluated our method using two publicly available datasets: the beyond the cranial vault (BTCV) segmentation dataset (training: 44, validation: 6) and the abdominal multi-organ segmentation (AMOS) challenge 2022 dataset (training:138, validation:16). Our results were compared with state-of-the-art SSL methods, including MT and dual-task consistency (DTC), using the Dice similarity coefficient (DSC) as an accuracy metric. On both datasets, our proposed SSL method consistently outperformed other methods, including supervised learning, achieving superior segmentation performance for various abdominal organs. These findings demonstrate the effectiveness of our approach, even with a limited number of labeled data. CONCLUSIONS: Our novel semi-supervised learning approach for abdominal multi-organ segmentation addresses the challenges associated with this task. By integrating a redrawing network and leveraging unlabeled data, we achieve remarkable improvements in accuracy. Our method demonstrates superior performance compared to existing SSL and supervised learning methods. This approach holds great promise in enhancing the precision and efficiency of multi-organ segmentation in medical imaging applications.

4.
PeerJ Comput Sci ; 10: e2238, 2024.
Article in English | MEDLINE | ID: mdl-39145244

ABSTRACT

The abdomen houses multiple vital organs, which are associated with various diseases posing significant risks to human health. Early detection of abdominal organ conditions allows for timely intervention and treatment, preventing deterioration of patients' health. Segmenting abdominal organs aids physicians in more accurately diagnosing organ lesions. However, the anatomical structures of abdominal organs are relatively complex, with organs overlapping each other, sharing similar features, thereby presenting challenges for segmentation tasks. In real medical scenarios, models must demonstrate real-time and low-latency features, necessitating an improvement in segmentation accuracy while minimizing the number of parameters. Researchers have developed various methods for abdominal organ segmentation, ranging from convolutional neural networks (CNNs) to Transformers. However, these methods often encounter difficulties in accurately identifying organ segmentation boundaries. MetaFormer abstracts the framework of Transformers, excluding the multi-head Self-Attention, offering a new perspective for solving computer vision problems and overcoming the limitations of Vision Transformers and CNN backbone networks. To further enhance segmentation effectiveness, we propose a U-shaped network, integrating SEFormer and depthwise cascaded upsampling (dCUP) as the encoder and decoder, respectively, into the UNet structure, named SEF-UNet. SEFormer combines Squeeze-and-Excitation modules with depthwise separable convolutions, instantiating the MetaFormer framework, enhancing the capture of local details and texture information, thereby improving edge segmentation accuracy. dCUP further integrates shallow and deep information layers during the upsampling process. Our model significantly improves segmentation accuracy while reducing the parameter count and exhibits superior performance in segmenting organ edges that overlap each other, thereby offering potential deployment in real medical scenarios.

5.
Comput Biol Med ; 181: 109050, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39205343

ABSTRACT

In the multi-organ segmentation task of medical images, there are some challenging issues such as the complex background, blurred boundaries between organs, and the larger scale difference in volume. Due to the local receptive fields of conventional convolution operations, it is difficult to obtain desirable results by directly using them for multi-organ segmentation. While Transformer-based models have global information, there is a significant dependency on hardware because of the high computational demands. Meanwhile, the depthwise convolution with large kernel can capture global information and have less computational requirements. Therefore, to leverage the large receptive field and reduce model complexity, we propose a novel CNN-based approach, namely adjacent-scale fusion U-Net with large kernel (ASF-LKUNet) for multi-organ segmentation. We utilize a u-shaped encoder-decoder as the base architecture of ASF-LKUNet. In the encoder path, we design the large kernel residual block, which combines the large and small kernels and can simultaneously capture the global and local features. Furthermore, for the first time, we propose an adjacent-scale fusion and large kernel GRN channel attention that incorporates the low-level details with the high-level semantics by the adjacent-scale feature and then adaptively focuses on the more global and meaningful channel information. Extensive experiments and interpretability analysis are made on the Synapse multi-organ dataset (Synapse) and the ACDC cardiac multi-structure dataset (ACDC). Our proposed ASF-LKUNet achieves 88.41% and 89.45% DSC scores on the Synapse and ACDC datasets, respectively, with 17.96M parameters and 29.14 GFLOPs. These results show that our method achieves superior performance with favorable lower complexity against ten competing approaches.ASF-LKUNet is superior to various competing methods and has less model complexity. Code and the trained models have been released on GitHub.


Subject(s)
Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Heart/diagnostic imaging
6.
Article in English | MEDLINE | ID: mdl-38957182

ABSTRACT

Organ segmentation is a fundamental requirement in medical image analysis. Many methods have been proposed over the past 6 decades for segmentation. A unique feature of medical images is the anatomical information hidden within the image itself. To bring natural intelligence (NI) in the form of anatomical information accumulated over centuries into deep learning (DL) AI methods effectively, we have recently introduced the idea of hybrid intelligence (HI) that combines NI and AI and a system based on HI to perform medical image segmentation. This HI system has shown remarkable robustness to image artifacts, pathology, deformations, etc. in segmenting organs in the Thorax body region in a multicenter clinical study. The HI system utilizes an anatomy modeling strategy to encode NI and to identify a rough container region in the shape of each object via a non-DL-based approach so that DL training and execution are applied only to the fuzzy container region. In this paper, we introduce several advances related to modeling of the NI component so that it becomes substantially more efficient computationally, and at the same time, is well integrated with the DL portion (AI component) of the system. We demonstrate a 9-40 fold computational improvement in the auto-segmentation task for radiation therapy (RT) planning via clinical studies obtained from 4 different RT centers, while retaining state-of-the-art accuracy of the previous system in segmenting 11 objects in the Thorax body region.

7.
Article in English | MEDLINE | ID: mdl-38957740

ABSTRACT

Organ segmentation is a crucial task in various medical imaging applications. Many deep learning models have been developed to do this, but they are slow and require a lot of computational resources. To solve this problem, attention mechanisms are used which can locate important objects of interest within medical images, allowing the model to segment them accurately even when there is noise or artifact. By paying attention to specific anatomical regions, the model becomes better at segmentation. Medical images have unique features in the form of anatomical information, which makes them different from natural images. Unfortunately, most deep learning methods either ignore this information or do not use it effectively and explicitly. Combined natural intelligence with artificial intelligence, known as hybrid intelligence, has shown promising results in medical image segmentation, making models more robust and able to perform well in challenging situations. In this paper, we propose several methods and models to find attention regions in medical images for deep learning-based segmentation via non-deep-learning methods. We developed these models and trained them using hybrid intelligence concepts. To evaluate their performance, we tested the models on unique test data and analyzed metrics including false negatives quotient and false positives quotient. Our findings demonstrate that object shape and layout variations can be explicitly learned to create computational models that are suitable for each anatomic object. This work opens new possibilities for advancements in medical image segmentation and analysis.

8.
Comput Biol Med ; 177: 108659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823366

ABSTRACT

Automatic abdominal organ segmentation is an essential prerequisite for accurate volumetric analysis, disease diagnosis, and tracking by medical practitioners. However, the deformable shapes, variable locations, overlapping with nearby organs, and similar contrast make the segmentation challenging. Moreover, the requirement of a large manually labeled dataset makes it harder. Hence, a semi-supervised contrastive learning approach is utilized to perform the automatic abdominal organ segmentation. Existing 3D deep learning models based on contrastive learning are not able to capture the 3D context of medical volumetric data along three planes/views: axial, sagittal, and coronal views. In this work, a semi-supervised view-adaptive unified model (VAU-model) is proposed to make the 3D deep learning model as view-adaptive to learn 3D context along each view in a unified manner. This method utilizes the novel optimization function that assists the 3D model to learn the 3D context of volumetric medical data along each view in a single model. The effectiveness of the proposed approach is validated on the three types of datasets: BTCV, NIH, and MSD quantitatively and qualitatively. The results demonstrate that the VAU model achieves an average Dice score of 81.61% which is a 3.89% improvement compared to the previous best results for pancreas segmentation in multi-organ dataset BTCV. It also achieves an average Dice score of 77.76% and 76.76% for the pancreas under the single organ non-pathological NIH dataset, and pathological MSD dataset.


Subject(s)
Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Deep Learning , Abdomen/diagnostic imaging , Abdomen/anatomy & histology , Tomography, X-Ray Computed/methods , Pancreas/diagnostic imaging , Pancreas/anatomy & histology , Databases, Factual
9.
ArXiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38855547

ABSTRACT

Image-guided mouse irradiation is essential to understand interventions involving radiation prior to human studies. Our objective is to employ Swin UNEt Transformers (Swin UNETR) to segment native micro-CT and contrast-enhanced micro-CT scans and benchmark the results against 3D no-new-Net (nnU-Net). Swin UNETR reformulates mouse organ segmentation as a sequence-to-sequence prediction task, using a hierarchical Swin Transformer encoder to extract features at 5 resolution levels, and connects to a Fully Convolutional Neural Network (FCNN)-based decoder via skip connections. The models were trained and evaluated on open datasets, with data separation based on individual mice. Further evaluation on an external mouse dataset acquired on a different micro-CT with lower kVp and higher imaging noise was also employed to assess model robustness and generalizability. Results indicate that Swin UNETR consistently outperforms nnU-Net and AIMOS in terms of average dice similarity coefficient (DSC) and Hausdorff distance (HD95p), except in two mice of intestine contouring. This superior performance is especially evident in the external dataset, confirming the model's robustness to variations in imaging conditions, including noise and quality, thereby positioning Swin UNETR as a highly generalizable and efficient tool for automated contouring in pre-clinical workflows.

10.
Biomed Eng Online ; 23(1): 52, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851691

ABSTRACT

Accurate segmentation of multiple organs in the head, neck, chest, and abdomen from medical images is an essential step in computer-aided diagnosis, surgical navigation, and radiation therapy. In the past few years, with a data-driven feature extraction approach and end-to-end training, automatic deep learning-based multi-organ segmentation methods have far outperformed traditional methods and become a new research topic. This review systematically summarizes the latest research in this field. We searched Google Scholar for papers published from January 1, 2016 to December 31, 2023, using keywords "multi-organ segmentation" and "deep learning", resulting in 327 papers. We followed the PRISMA guidelines for paper selection, and 195 studies were deemed to be within the scope of this review. We summarized the two main aspects involved in multi-organ segmentation: datasets and methods. Regarding datasets, we provided an overview of existing public datasets and conducted an in-depth analysis. Concerning methods, we categorized existing approaches into three major classes: fully supervised, weakly supervised and semi-supervised, based on whether they require complete label information. We summarized the achievements of these methods in terms of segmentation accuracy. In the discussion and conclusion section, we outlined and summarized the current trends in multi-organ segmentation.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Automation
11.
Med Image Anal ; 97: 103226, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38852215

ABSTRACT

The advancement of artificial intelligence (AI) for organ segmentation and tumor detection is propelled by the growing availability of computed tomography (CT) datasets with detailed, per-voxel annotations. However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and learning scheme. To overcome these limitations, we propose a universal, extensible framework enabling a single model, termed Universal Model, to deal with multiple public datasets and adapt to new classes (e.g., organs/tumors). Firstly, we introduce a novel language-driven parameter generator that leverages language embeddings from large language models, enriching semantic encoding compared with one-hot encoding. Secondly, the conventional output layers are replaced with lightweight, class-specific heads, allowing Universal Model to simultaneously segment 25 organs and six types of tumors and ease the addition of new classes. We train our Universal Model on 3410 CT volumes assembled from 14 publicly available datasets and then test it on 6173 CT volumes from four external datasets. Universal Model achieves first place on six CT tasks in the Medical Segmentation Decathlon (MSD) public leaderboard and leading performance on the Beyond The Cranial Vault (BTCV) dataset. In summary, Universal Model exhibits remarkable computational efficiency (6× faster than other dataset-specific models), demonstrates strong generalization across different hospitals, transfers well to numerous downstream tasks, and more importantly, facilitates the extensibility to new classes while alleviating the catastrophic forgetting of previously learned classes. Codes, models, and datasets are available at https://github.com/ljwztc/CLIP-Driven-Universal-Model.


Subject(s)
Tomography, X-Ray Computed , Humans , Radiography, Abdominal/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Artificial Intelligence
12.
Comput Methods Programs Biomed ; 254: 108280, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878361

ABSTRACT

BACKGROUND AND OBJECTIVE: Transformer, which is notable for its ability of global context modeling, has been used to remedy the shortcomings of Convolutional neural networks (CNN) and break its dominance in medical image segmentation. However, the self-attention module is both memory and computational inefficient, so many methods have to build their Transformer branch upon largely downsampled feature maps or adopt the tokenized image patches to fit their model into accessible GPUs. This patch-wise operation restricts the network in extracting pixel-level intrinsic structural or dependencies inside each patch, hurting the performance of pixel-level classification tasks. METHODS: To tackle these issues, we propose a memory- and computation-efficient self-attention module to enable reasoning on relatively high-resolution features, promoting the efficiency of learning global information while effective grasping fine spatial details. Furthermore, we design a novel Multi-Branch Transformer (MultiTrans) architecture to provide hierarchical features for handling objects with variable shapes and sizes in medical images. By building four parallel Transformer branches on different levels of CNN, our hybrid network aggregates both multi-scale global contexts and multi-scale local features. RESULTS: MultiTrans achieves the highest segmentation accuracy on three medical image datasets with different modalities: Synapse, ACDC and M&Ms. Compared to the Standard Self-Attention (SSA), the proposed Efficient Self-Attention (ESA) can largely reduce the training memory and computational complexity while even slightly improve the accuracy. Specifically, the training memory cost, FLOPs and Params of our ESA are 18.77%, 20.68% and 74.07% of the SSA. CONCLUSIONS: Experiments on three medical image datasets demonstrate the generality and robustness of the designed network. The ablation study shows the efficiency and effectiveness of our proposed ESA. Code is available at: https://github.com/Yanhua-Zhang/MultiTrans-extension.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Diagnostic Imaging , Databases, Factual
13.
Phys Med ; 122: 103385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810392

ABSTRACT

PURPOSE: The segmentation of abdominal organs in magnetic resonance imaging (MRI) plays a pivotal role in various therapeutic applications. Nevertheless, the application of deep-learning methods to abdominal organ segmentation encounters numerous challenges, especially in addressing blurred boundaries and regions characterized by low-contrast. METHODS: In this study, a multi-scale visual attention-guided network (VAG-Net) was proposed for abdominal multi-organ segmentation based on unpaired multi-sequence MRI. A new visual attention-guided (VAG) mechanism was designed to enhance the extraction of contextual information, particularly at the edge of organs. Furthermore, a new loss function inspired by knowledge distillation was introduced to minimize the semantic disparity between different MRI sequences. RESULTS: The proposed method was evaluated on the CHAOS 2019 Challenge dataset and compared with six state-of-the-art methods. The results demonstrated that our model outperformed these methods, achieving DSC values of 91.83 ± 0.24% and 94.09 ± 0.66% for abdominal multi-organ segmentation in T1-DUAL and T2-SPIR modality, respectively. CONCLUSION: The experimental results show that our proposed method has superior performance in abdominal multi-organ segmentation, especially in the case of small organs such as the kidneys.


Subject(s)
Abdomen , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Abdomen/diagnostic imaging , Deep Learning , Neural Networks, Computer
14.
Article in English | MEDLINE | ID: mdl-38720159

ABSTRACT

PURPOSE: This paper considers a new problem setting for multi-organ segmentation based on the following observations. In reality, (1) collecting a large-scale dataset from various institutes is usually impeded due to privacy issues; (2) many images are not labeled since the slice-by-slice annotation is costly; and (3) datasets may exhibit inconsistent, partial annotations across different institutes. Learning a federated model from these distributed, partially labeled, and unlabeled samples is an unexplored problem. METHODS: To simulate this multi-organ segmentation problem, several distributed clients and a central server are maintained. The central server coordinates with clients to learn a global model using distributed private datasets, which comprise a small part of partially labeled images and a large part of unlabeled images. To address this problem, a practical framework that unifies partially supervised learning (PSL), semi-supervised learning (SSL), and federated learning (FL) paradigms with PSL, SSL, and FL modules is proposed. The PSL module manages to learn from partially labeled samples. The SSL module extracts valuable information from unlabeled data. Besides, the FL module aggregates local information from distributed clients to generate a global statistical model. With the collaboration of three modules, the presented scheme could take advantage of these distributed imperfect datasets to train a generalizable model. RESULTS: The proposed method was extensively evaluated with multiple abdominal CT datasets, achieving an average result of 84.83% in Dice and 41.62 mm in 95HD for multi-organ (liver, spleen, and stomach) segmentation. Moreover, its efficacy in transfer learning further demonstrated its good generalization ability for downstream segmentation tasks. CONCLUSION: This study considers a novel problem of multi-organ segmentation, which aims to develop a generalizable model using distributed, partially labeled, and unlabeled CT images. A practical framework is presented, which, through extensive validation, has proved to be an effective solution, demonstrating strong potential in addressing this challenging problem.

15.
Phys Eng Sci Med ; 47(3): 919-928, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38656437

ABSTRACT

Cervical cancer is a common cancer in women globally, with treatment usually involving radiation therapy (RT). Accurate segmentation for the tumour site and organ-at-risks (OARs) could assist in the reduction of treatment side effects and improve treatment planning efficiency. Cervical cancer Magnetic Resonance Imaging (MRI) segmentation is challenging due to a limited amount of training data available and large inter- and intra- patient shape variation for OARs. The proposed Masked-Net consists of a masked encoder within the 3D U-Net to account for the large shape variation within the dataset, with additional dilated layers added to improve segmentation performance. A new loss function was introduced to consider the bounding box loss during training with the proposed Masked-Net. Transfer learning from a male pelvis MRI data with a similar field of view was included. The approaches were compared to the 3D U-Net which was widely used in MRI image segmentation. The data used consisted of 52 volumes obtained from 23 patients with stage IB to IVB cervical cancer across a maximum of 7 weeks of RT with manually contoured labels including the bladder, cervix, gross tumour volume, uterus and rectum. The model was trained and tested with a 5-fold cross validation. Outcomes were evaluated based on the Dice Similarity Coefficients (DSC), the Hausdorff Distance (HD) and the Mean Surface Distance (MSD). The proposed method accounted for the small dataset, large variations in OAR shape and tumour sizes with an average DSC, HD and MSD for all anatomical structures of 0.790, 30.19mm and 3.15mm respectively.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Organs at Risk , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Female , Organs at Risk/diagnostic imaging , Automation , Anatomic Variation , Radiotherapy Planning, Computer-Assisted , Male
16.
Med Image Anal ; 95: 103156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603844

ABSTRACT

The state-of-the-art multi-organ CT segmentation relies on deep learning models, which only generalize when trained on large samples of carefully curated data. However, it is challenging to train a single model that can segment all organs and types of tumors since most large datasets are partially labeled or are acquired across multiple institutes that may differ in their acquisitions. A possible solution is Federated learning, which is often used to train models on multi-institutional datasets where the data is not shared across sites. However, predictions of federated learning can be unreliable after the model is locally updated at sites due to 'catastrophic forgetting'. Here, we address this issue by using knowledge distillation (KD) so that the local training is regularized with the knowledge of a global model and pre-trained organ-specific segmentation models. We implement the models in a multi-head U-Net architecture that learns a shared embedding space for different organ segmentation, thereby obtaining multi-organ predictions without repeated processes. We evaluate the proposed method using 8 publicly available abdominal CT datasets of 7 different organs. Of those datasets, 889 CTs were used for training, 233 for internal testing, and 30 volumes for external testing. Experimental results verified that our proposed method substantially outperforms other state-of-the-art methods in terms of accuracy, inference time, and the number of parameters.


Subject(s)
Deep Learning , Tomography, X-Ray Computed , Humans , Datasets as Topic , Databases, Factual
17.
Bioengineering (Basel) ; 11(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38671742

ABSTRACT

Organ segmentation from CT images is critical in the early diagnosis of diseases, progress monitoring, pre-operative planning, radiation therapy planning, and CT dose estimation. However, data limitation remains one of the main challenges in medical image segmentation tasks. This challenge is particularly huge in pediatric CT segmentation due to children's heightened sensitivity to radiation. In order to address this issue, we propose a novel segmentation framework with a built-in auxiliary classifier generative adversarial network (ACGAN) that conditions age, simultaneously generating additional features during training. The proposed conditional feature generation segmentation network (CFG-SegNet) was trained on a single loss function and used 2.5D segmentation batches. Our experiment was performed on a dataset with 359 subjects (180 male and 179 female) aged from 5 days to 16 years and a mean age of 7 years. CFG-SegNet achieved an average segmentation accuracy of 0.681 dice similarity coefficient (DSC) on the prostate, 0.619 DSC on the uterus, 0.912 DSC on the liver, and 0.832 DSC on the heart with four-fold cross-validation. We compared the segmentation accuracy of our proposed method with previously published U-Net results, and our network improved the segmentation accuracy by 2.7%, 2.6%, 2.8%, and 3.4% for the prostate, uterus, liver, and heart, respectively. The results indicate that our high-performing segmentation framework can more precisely segment organs when limited training images are available.

18.
Sci Rep ; 14(1): 9784, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684904

ABSTRACT

Accurate multi-organ segmentation in 3D CT images is imperative for enhancing computer-aided diagnosis and radiotherapy planning. However, current deep learning-based methods for 3D multi-organ segmentation face challenges such as the need for labor-intensive manual pixel-level annotations and high hardware resource demands, especially regarding GPU resources. To address these issues, we propose a 3D proxy-bridged region-growing framework specifically designed for the segmentation of the liver and spleen. Specifically, a key slice is selected from each 3D volume according to the corresponding intensity histogram. Subsequently, a deep learning model is employed to pinpoint the semantic central patch on this key slice, to calculate the growing seed. To counteract the impact of noise, segmentation of the liver and spleen is conducted on superpixel images created through proxy-bridging strategy. The segmentation process is then extended to adjacent slices by applying the same methodology iteratively, culminating in the comprehensive segmentation results. Experimental results demonstrate that the proposed framework accomplishes segmentation of the liver and spleen with an average Dice Similarity Coefficient of approximately 0.93 and a Jaccard Similarity Coefficient of around 0.88. These outcomes substantiate the framework's capability to achieve performance on par with that of deep learning methods, albeit requiring less guidance information and lower GPU resources.


Subject(s)
Deep Learning , Imaging, Three-Dimensional , Liver , Spleen , Tomography, X-Ray Computed , Liver/diagnostic imaging , Spleen/diagnostic imaging , Spleen/anatomy & histology , Humans , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods , Algorithms
19.
Phys Med Biol ; 69(11)2024 May 14.
Article in English | MEDLINE | ID: mdl-38479023

ABSTRACT

Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning including unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemmas in multi-organ segmentation. We first review the fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.


Subject(s)
Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Deep Learning , Machine Learning
20.
Comput Biol Med ; 172: 108261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508056

ABSTRACT

Whole heart segmentation (WHS) has significant clinical value for cardiac anatomy, modeling, and analysis of cardiac function. This study aims to address the WHS accuracy on cardiac CT images, as well as the fast inference speed and low graphics processing unit (GPU) memory consumption required by practical clinical applications. Thus, we propose a multi-residual two-dimensional (2D) network integrating spatial correlation for WHS. The network performs slice-by-slice segmentation on three-dimensional cardiac CT images in a 2D encoder-decoder manner. In the network, a convolutional long short-term memory skip connection module is designed to perform spatial correlation feature extraction on the feature maps at different resolutions extracted by the sub-modules of the pre-trained ResNet-based encoder. Moreover, a decoder based on the multi-residual module is designed to analyze the extracted features from the perspectives of multi-scale and channel attention, thereby accurately delineating the various substructures of the heart. The proposed method is verified on a dataset of the multi-modality WHS challenge, an in-house WHS dataset, and a dataset of the abdominal organ segmentation challenge. The dice, Jaccard, average symmetric surface distance, Hausdorff distance, inference time, and maximum GPU memory of the WHS are 0.914, 0.843, 1.066 mm, 15.778 mm, 9.535 s, and 1905 MB, respectively. The proposed network has high accuracy, fast inference speed, minimal GPU memory consumption, strong robustness, and good generalization. It can be deployed to clinical practical applications for WHS and can be effectively extended and applied to other multi-organ segmentation fields. The source code is publicly available at https://github.com/nancy1984yan/MultiResNet-SC.


Subject(s)
Heart , Software , Heart/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL