Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Water Res ; 256: 121564, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615605

ABSTRACT

Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with machine learning, we comprehensively investigated the reactivity and transformation of NOM, and the formation of organosulfates during the UV/peroxydisulfate (PDS) process. After 60 min UV/PDS treatment, the CHO formula number and dissolved organic carbon concentration significantly decreased by 83.4 % and 74.8 %, respectively. Concurrently, the CHOS formula number increased substantially from 0.7 % to 20.5 %. Machine learning identifies DBE and AImod as the critical characteristics determining the reactivity of NOM during UV/PDS treatment. Furthermore, linkage analysis suggests that decarboxylation and dealkylation reactions are dominant transformation pathways, while the additions of SO3 and SO4 are also non-negligible. According to SHAP analysis, the m/z, number of oxygens, DBE and O/C of NOM were positively correlated with the formation of organosulfates in UV/PDS process. 92 organosulfates were screened out by precursor ion scan of HPLC-MS/MS and verified by UPLC-Q-TOF-MS, among which, 7 organosufates were quantified by authentic standards with the highest concentrations ranging from 2.1 to 203.0 ng L‒1. In addition, the cytotoxicity of NOM to Chinese Hamster Ovary (CHO) cells increased by 13.8 % after 30 min UV/PDS treatment, likely responsible for the formation of organosulfates. This is the first study to employ FT-ICR MS combined with machine learning to identify the dominant NOM properties affecting its reactivity and confirmed the formation of organosulfates from sulfate radical oxidation of NOM.


Subject(s)
Machine Learning , Sulfates , Sulfates/chemistry , Animals , CHO Cells , Ultraviolet Rays , Cricetulus , Mass Spectrometry , Water Purification/methods , Oxidation-Reduction
2.
Environ Sci Technol ; 57(37): 13912-13924, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37669221

ABSTRACT

Anthropogenic pollutants can greatly mediate formation pathways and chemical compositions of secondary organic aerosol (SOA) in urban atmospheres. We investigated the molecular tracers for different types of SOA in PM2.5 under varying NO/NO2 conditions in Guangzhou using source analysis of particle-phase speciated organics obtained from an iodide chemical ionization mass spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS). Results show that low-NO-like pathways (when NO/NO2 < 0.2) explained ∼75% of the total measured FIGAERO-OA during regional transport periods, which was enriched in more-oxidized C4-C6 non-nitrogenous compounds over ozone accumulation. Daytime high-NO chemistry played larger roles (38%) in local pollution episodes, with organic nitrates (ONs) and nitrophenols increasing with enhanced aerosol water content and nitrate fraction. Nighttime NO3-initiated oxidation, characterized by monoterpene-derived ONs, accounted for comparable percentages (10-12%) of FIGAERO-OA for both two periods. Furthermore, the presence of organosulfates (OSs) improves the understanding of the roles of aqueous-phase processes in SOA production. Carbonyl-derived OSs exhibited a preferential formation under conditions of high aerosol acidity and/or abundant sulfate, which correlated well with low-NO-like SOA. Our results demonstrate the importance of NO/NO2 ratios in controlling SOA compositions, as well as interactions between water content, aerosol acidity, and inorganic salts in gas-to-particle partitioning of condensable organics.


Subject(s)
Air Pollution , Ozone , Nitrogen Dioxide , Oxidation-Reduction , Aerosols
3.
Sci Total Environ ; 904: 166851, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37673264

ABSTRACT

Organosulfates (OSs) are formed from volatile organic compounds (VOCs) and their oxidation products in the presence of sulfate particles. While OSs represent an important component in secondary organic aerosol, the knowledge of their formation driving force, mechanisms, and environmental impact remain inadequately understood. In this study, we report ambient observations of C2-3 oxygenated VOCs derived OSs (C2-3 OSs) at a suburban location of Hong Kong during autumn 2016. The C2-3 OSs, including glycolaldehyde sulfate (GS), hydroxyacetone sulfate (HAS), glycolic acid sulfate (GAS), and lactic acid sulfate (LAS), were quantified/semi-quantified using offline liquid chromatography-mass spectrometry analysis of aerosol filter samples. The average sum concentration of C2-3 OSs was 36 ng/m3. Correlation analysis revealed that sulfate, surface area, and liquid water content were important factors influencing C2-3 OS formation. Online measurement with an iodide High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer (HR-ToF-CIMS) coupled with the Filter Inlet for Gases and AEROsols (FIGAERO) was also conducted to monitor C2-3 OSs, and their potential oxygenated VOC precursors in both gas- and particle-phase, and aerosol acidity tracer simultaneously. Our measurements support that glycolaldehyde/glyoxal, hydroxyacetone, glycolic acid/glyoxal, and lactic acid/methylglyoxal are likely precursors for GS, HAS, GAS, and LAS, respectively. Additionally, we found strong correlation between C2-3 OSs and H3S2O8-, a marker for aerosol acidity, providing field observational evidence for acid-catalyzed formation of small OSs. Based on both online and offline measurements, acid-catalyzed formation mechanisms in particle/aqueous phase are proposed. Specifically, the unique structure of adjacent carbonyl and hydroxyl groups in the C2-3 oxygenated VOC precursors can facilitate the formation of (1) a five-member ring intermediate via intramolecular hydrogen bond to react with sulfur trioxide through heterogenous reaction or (2) cyclic sulfate intermediate via particle-phase reaction with sulfuric acid to generate C2-3 OSs. These proposed mechanisms provide an alternative pathway for the liquid-phase production of C2-3 OSs.

4.
Environ Sci Technol ; 57(23): 8708-8718, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37265070

ABSTRACT

The molecular composition of organic aerosols in ambient PM2.5 was investigated in an urban area in the Guanzhong basin of northwest China during a severe regional haze episode in the winter of 2018/2019. Organic matter, accounting for 20-35% of PM2.5 mass concentration, was characterized using direct infusion and electrospray ionization coupled with high-resolution Orbitrap mass spectrometry. The number of organic molecular formula assignments was primarily dominated by organosulfur species (OrgS, including CHOS and CHONS) in negative ion mode. The number and peak signal intensity of OrgS distinctly increased during the severe haze episode. Organosulfates and nitrooxy-organosulfates constituted the majority number (72-94%) of OrgS over the entire period. Although the OrgS were mostly present in aliphatic molecular structures, an increase in the number of polycyclic aromatic OrgS on haze days revealed the enhanced contribution from anthropogenic sources. The number of OrgS strongly correlated with ambient relative humidity and the oxidation ratios of sulfur and nitrogen, suggesting the important roles of aqueous phase chemistry and atmospheric oxidation in the formation of OrgS. A thorough understanding of the significance of OrgS will be essential to assess and mitigate the adverse impacts of haze pollution.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , China , Environmental Pollution/analysis , Seasons , Aerosols/analysis , Particulate Matter/analysis
5.
J Environ Sci (China) ; 126: 103-112, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503740

ABSTRACT

Organosulfate (OSA) nanoparticles, as secondary organic aerosol (SOA) compositions, are ubiquitous in urban and rural environments. Hence, we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations. The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ions (CBs), which engage in the subsequent esterification or oligomerization reactions to form OSAs/organosulfites (OSIs) or dimers. The kinetic results reveal that dehydration to form CBs for BOL and DOL reaction systems is the rate-limiting step. Subsequently, about 18% of CBs occur via oligomerization to dimers, which are difficult to further oligomerize because all reactive sites are occupied. The rate constant of BOL reaction system is one order of magnitude larger than that of DOL reaction system, implying that relative short-chain alcohols are more prone to contribute OSAs/OSIs than long-chain alcohols. Our results reveal that typical long-chain alcohols contribute SOA formation via esterification rather than oligomerization because OSA/OSI produced by esterification engages in nanoparticle growth through enhancing hygroscopicity.


Subject(s)
Alcohols , Fatty Alcohols , Aerosols , Butanols , Polymers , 1-Butanol
6.
Environ Pollut ; 318: 120874, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36526053

ABSTRACT

Both brown carbon (BrC) and the non-absorbing components coated on black carbon (BC) aerosols can enhance the light absorption of BC aerosols. BrC is a complicated mixture of organic compounds and not well characterized, which hinders exploring the links between BrC and optical properties. We conducted an in-depth field study on optical properties of ambient aerosols at a monitoring site in Shanghai, China via real-time monitoring and offline analysis. Results showed that BrC caused light absorption coefficients were 3.3 ± 3.3 Mm-1, 2.2 ± 5.0 Mm-1, 1.2 ± 1.2 Mm-1 at λ = 370, 470 and 520 nm, respectively, accounting for 11%, 10%, 6% of the total aerosol absorption for the corresponding wavelengths. A larger proportion of long-chain aliphatic organosulfates (OSs, CnH2n+2O4S, (CH2)nO5S, (CH2)nO6S) with double bond equivalent (DBE) values of 0 or 1 accounted for 5-20% of the light absorption (λ = 365 nm) for soluble brown carbon (BrC), which were dominating for the days with less N-containing aromatic compounds appearing. Furthermore, the structure of CnH2n+2O4S, (CH2)nO5S, (CH2)nO6S were explored using target MS/MS of HPLC-Q-ToF-MS: (CH2)nO5S series, the most abundant family of OSs, were constructed by functionalizing a saturated hydrocarbon with one sulfate and one carbonyl group. CnH2n+2O4S series were oxidized with only one sulfate group in the aliphatic chain R. (CH2)nO6S series were proposed as aliphatic OSs with one ester group. We speculated aliphatic OSs were formed via acid catalyzed perhydrolysis of hydroperoxides derived from long-chain alkanes releasing from diesel fueled vehicles, followed by the reaction with sulfate anion radicals. Therefore, relevant technologies should be further explored to reduce the impacts from vehicle emissions.


Subject(s)
Air Pollutants , Air Pollutants/analysis , China , Carbon/analysis , Tandem Mass Spectrometry , Environmental Monitoring/methods , Aerosols/analysis , Sulfates , Esters , Particulate Matter/analysis
7.
Environ Sci Technol ; 56(23): 16611-16620, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36378716

ABSTRACT

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (•OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase •OH exposure (∼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without •OH revealed that decomposition of oligomers by heterogeneous •OH oxidation acts as a sink for •OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this •OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.


Subject(s)
Air Pollutants , Sulfates , Sulfates/chemistry , Atmosphere/chemistry , Hemiterpenes , Butadienes , Aerosols/chemistry , Particulate Matter/analysis , Dust/analysis , Oxidation-Reduction , Oxidative Stress , Air Pollutants/analysis
8.
Environ Sci Technol ; 56(15): 10596-10607, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35834796

ABSTRACT

Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.


Subject(s)
Atmosphere , Hemiterpenes , Acids/chemistry , Aerosols/chemistry , Atmosphere/chemistry , Butadienes , Hydrogen-Ion Concentration
9.
Sci Total Environ ; 834: 155314, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35447194

ABSTRACT

Organosulfates (OSs) are important secondary organic aerosol (SOA) species in atmospheric fine particles (PM2.5) and can be considered as molecular indicators of SOA. To understand their seasonal and diurnal distribution characteristics and formation mechanism in northern China, PM2.5 samples collected in daytime and nighttime in winter and summer 2019 in Tianjin, China were studied for total OSs and three OS species (methyl sulfate (MS), glycolic acid sulfate (GAS), benzyl sulfate (BS)). The S contents of total OSs (SOSs) in winter and summer were 0.6 ± 1 µg m-3 and 0.4 ± 0.3 µg m-3, respectively, in PM2.5. BS found to be less abundant among the measured species, and accounted for only 0.8%-4.8% of methyl sulfate (MS), and 0.01%-0.3% of glycolic acid sulfate (GAS). Average content of GAS was higher in summer than in winter, while that of MS and BS were opposite. The fractions of MS, GAS, and BS in SOSs were higher in daytime than that in night during winter, despite their concentrations were higher in nighttime, indicating that the concentrations of unidentified OS species were much higher in nighttime than in daytime. Such diurnal variations implied that relative humidity (RH) played a major role in the formation processes of OSs, especially biogenic OSs and the acid catalyzed reaction of SO42- might be a main pathway of OSs formation during winter. High T, RH and O3 determined biological GAS in summer, while NO2 and SO2 determined anthropogenic OSs in winter. We also found that the fractions of SOSs in S contents of organic sulfur (SOS) and the S contents of MS + GAS+BS (SMS+GAS+BS) in SOSs were accounted for only less than 10% and 5%, respectively. Therefore, this study suggests the components of OS and OSs in PM2.5 have not been discovered fully yet and needs further research.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Seasons , Sulfates/analysis
10.
Chemosphere ; 297: 134103, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35219711

ABSTRACT

PM2.5 samples were collected during 2017-2018 at two Eastern Mediterranean urban sites in Greece, Athens and Patra, in order to study the abundances, the seasonal trends, the sources and the possible impact of gas phase pollutants on organosulfate formation. Each of the studied groups, except that of aromatic organosulfates, presented higher concentrations in Patra compared to those measured in Athens, from 1.1 (nitro-oxy organosulfates) to 3.6 times (isoprene organosulfates). At both sites, isoprene organosulfates was the dominant group which accounted on average for more than 50% of the total measured organosulfates, with the contribution being more than 80% during summer. Strong seasonality was observed at both sites, regarding the isoprene organosulfates, with an almost 21-fold increase from winter to summer. The same pattern, but to a lesser extent, was also observed for monoterpenes organosulfates at both sites. Alkyl organosulfates followed an identical seasonal trend with the highest mean concentrations observed during spring followed by autumn. The seasonality of anthropogenic organosulfates, multisource organosulfates and nitro-oxy organosulfates differed among the two sites or presented a more compound-specific variation. The isoprene-epoxydiol pathway appeared to be the dominant pathway of isoprene transformation, with the compounds iOS211, iOS213 and iOS215 being the major isoprene organosulfate compounds at both sites. Organosulfate contribution to the concentration of particulate matter presented common variation at both sites, ranging from 0.20 ± 0.14% (winter) to 2.5 ± 1.2% (summer) and from 0.21 ± 0.13% (winter) to 5.0 ± 2.5% (summer) for Athens and Patra, respectively. The increased NOx levels in Athens, appeared to affect isoprene organosulfate formation as well as the formation of monoterpene and decalin nitro-oxy organosulfates. Principal component analysis followed by multiple linear regression analysis highlighted the dominance of isoprene organosulfates. In Athens, the possible impact of transportation emissions on the formation of monoterpene nitro-oxy organosulfates is indicated while the correlation of naphthalene organosulfates with low molecular weight polycyclic aromatic hydrocarbons suggests that vehicle emissions may be a significant source. In Patra, the possible contribution of sea on methyl sulfate levels is denoted.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Butadienes , China , Cities , Environmental Monitoring , Hemiterpenes , Monoterpenes/analysis , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis
11.
J Hazard Mater ; 430: 128406, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35149506

ABSTRACT

Secondary organic aerosols (SOA) are crucial constitution of fine particulate matter (PM), which are mainly derived from photochemical oxidation products of primary organic matter and volatile organic compounds (VOCs), and can induce terrible impacts to human health, air quality and climate change. As we know, organosulfates (OSs) and organic nitrates (ON) are important contributors for SOA formation, which could be possibly produced through various pathways, resulting in extremely complex formation mechanism of SOA. Although plenty of research has been focused on the origins, spatial distribution and formation mechanisms of SOA, a comprehensive and systematic understanding of SOA formation in the atmosphere remains to be detailed explored, especially the most important OSs and ON dedications. Thus, in this review, we systematically summarize the recent research about origins and formation mechanisms of OSs and ON, and especially focus on their contribution to SOA, so as to have a clearer understanding of the origin, spatial distribution and formation principle of SOA. Importantly, we interpret the complex interaction with coexistence effect of SOx and NOx on SOA formation, and emphasize the future insights for SOA research to expect a more comprehensive theory and practice to alleviate SOA burden.


Subject(s)
Air Pollutants , Nitrates , Aerosols/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Humans , Particulate Matter/analysis
12.
Sci Total Environ ; 806(Pt 3): 151275, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34743888

ABSTRACT

Atmospheric organosulfates (OSs) derived from biogenic volatile organic compounds (BVOCs) encode chemical interaction strength between anthroposphere and biosphere. We report BVOC-derived OSs in the summer of 2016 and the winter of 2017 at four locations in China (i.e., Hong Kong (HK), Guangzhou (GZ), Shanghai (SH), and Beijing (BJ)). The spatial coverage of three climatic zones from the south to the north in China is accompanied with a wide range of aerosol inorganic sulfate (4.9-13.8 µg/m3). We employed a combined targeted and untargeted approach using high-performance liquid chromatography-Orbitrap mass spectrometry to quantify/semi-quantify ~200 OSs and nitrooxy OSs derived from four types of precursors, namely C2-C3 oxygenated VOCs, isoprene, monoterpenes (MT), and sesquiterpenes (ST). The seasonal averages of the total quantified OSs across the four sites are in the range of 201-545 (summer) and 123-234 ng/m3 (winter), with the isoprene-derived OSs accounting for more than 80% (summer) and 57% (winter). The C2-3 OSs and isoprene-derived OSs share the same seasonality (summer >winter) and the same south-north spatial gradient as those of isoprene emissions. In contrast, the MT- and ST-derived OSs are of either comparable abundance or slightly higher abundance in winter at the four sites. The spatial contrasts for MT- and ST-derived OSs are not clearly discernable among GZ, SH, and BJ. HK is noted to have invariably lower abundances of all groups of OSs, in line with its aerosol inorganic sulfate being the lowest. These results indicate that BVOC emissions are the driving factor regulating the formation of C2-3 OSs and isoprene-derived OSs. Other factors, such as sulfate abundance, however, play a more important role in the formation of MT- and ST-derived OSs. This in turn suggests that the formation kinetics and/or pathways differ between these two sub-groups of BVOCs-derived OSs.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , China , Mass Spectrometry , Seasons , Volatile Organic Compounds/analysis
13.
Environ Sci Technol ; 55(13): 8573-8582, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34165958

ABSTRACT

Nitrooxy organosulfates derived from terpenes (NOSTP) represent an important class of products formed between anthropogenic pollution (e.g., SO2 and NOx) and natural emissions. NOSTP compounds have been consistently detected in atmospheric environments under varying urban influences. Their chemical linkages to both anthroposphere and biosphere make them valuable markers for tracking anthroposphere-biosphere interactions. However, their quantification, formation, and transformation kinetics in atmospheric aerosols are hindered due to the lack of NOSTP standards. In this work, we developed two routes for the first concise chemical synthesis of eight NOSTP from terpenes including α-pinene, ß-pinene, limonene, limonaketone, and ß-caryophyllene. Subsequently, six of the synthesized NOSTP were for the first time positively identified in ambient aerosol samples, clarifying certain misidentifications in previous studies. More significantly, the availability of authentic standards allows irrefutable observation of three carbon skeleton-rearranged NOSTP, two derived from α-pinene, and one derived from ß-caryophyllene, revealing the occurrence of previously unrecognized transformation pathways in the formation of NOSTP. Two synthesized NOSTP from ß-pinene and limonene could not be detected, likely due to rapid hydrolysis of their immediate hydroxynitrate precursors outcompeting sulfation. Such mechanistic evidence is valuable in understanding the atmospheric chemistry of NOSTP and related compounds. This work demonstrates the usefulness of authentic standards in probing the NOSTP formation mechanisms in the atmosphere. Comparison of NOSTP ambient samples collected from four Chinese cities in two winter months indicates that anthropogenic chemical factors could outcompete terpene emissions in the formation of NOSTP.


Subject(s)
Air Pollutants , Aerosols , Air Pollutants/analysis , Atmosphere , Limonene , Monoterpenes , Terpenes
14.
Sci Total Environ ; 784: 147244, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34088066

ABSTRACT

Organosulfates (OSs) are well-known water-soluble constituents of atmospheric aerosol particles. They are formed from multiphase reactions between volatile organic compounds (VOCs) and their photooxidation products, and acidic sulfate originating from biogenic and anthropogenic sources in the atmosphere. Although the analytical procedures used to measure OSs, including sampling, pre-treatment, and instrumental detection, have advanced substantially in the last decade, there is still a need for accurate and standardized analysis procedures for the identification, quantification, and comparison of OSs in different regions. Additionally, there has no study focused on the health effects of OSs. This review outlines the analytical methods developed for OS detection during the last decade, highlighting both improvements and drawbacks. It also considers the future development of analytical methods for OS detection, and proposes the establishment of OSs screening method from the perspective of health effects to solve the problem of unknown health related OSs identification.

15.
J Hazard Mater ; 419: 126431, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34186426

ABSTRACT

Organosulfates (OSs) are an important component of atmospheric organic aerosol (OA) and are widespread in various environments. However, the OSs generated from anthropogenic emissions are poorly understood. In this study, the molecular compositions of OSs from atmospheric PM2.5 samples collected during a winter measurement campaign (SEISO-Bohai) at Jingtang Harbor were characterized via ultrahigh resolution mass spectrometry (UHRMS). The changes of port OS compositions were observed in episodes of complete haze pollution. As the pollution aggravated, the relative abundances of OSs were apparently increased, and the molecule compositions became more complex, primarily driven by the oxidation and fragmentation processes. Potential OS precursors from traffic emissions were identified based on an optimized "OS precursor map" developed in the previous study. OSs characterized by high molecular weights and low degrees of both unsaturation and oxidization were suggested to mainly derive from secondary reactions of intermediate volatile organic compounds (IVOCs) emitted by traffic sources. These OSs were primarily detected in clean-day samples, followed by decreasing with the pollution process. In addition, our study also finds that ship emissions may further facilitated OS productions under haze pollution conditions.


Subject(s)
Volatile Organic Compounds , Aerosols/analysis , Dust , Mass Spectrometry , Volatile Organic Compounds/analysis
16.
Environ Sci Technol ; 55(12): 7794-7807, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34044541

ABSTRACT

Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between ß-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to ß-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among ß-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.


Subject(s)
Air Pollutants , Aerosols , Air Pollutants/analysis , Bicyclic Monoterpenes , Nitrogen , Sulfur
17.
Environ Pollut ; 264: 114742, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32402708

ABSTRACT

1,3,5-Trimethylbeneze (TMB) is an important constituent of anthropogenic volatile organic compounds that contributes to the formation of secondary organic aerosol (SOA). A series of chamber experiments were performed to probe the effects of NOx and SO2 on SOA formation from TMB photooxidation. The molecular composition of TMB SOA was investigated by ultra-high performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). We found that the SOA yield increases notably with elevated NOx concentrations under low-NOx condition ([TMB]0/[NOx]0 > 10 ppbC ppb-1), while an opposite trend is observed in high-NOx experiments ([TMB]0/[NOx]0 < 10 ppbC ppb-1). The increase in SOA yield in low-NOx regime is attributed to the increase of NOx-induced OH concentrations. The formation of low-volatility species might be suppressed, thereby leading to a lower SOA yield in high-NOx conditions. Moreover, SOA formation was promoted in experiment with SO2 addition. Multifunctional products containing carbonyl, acid, alcohol, and nitrate functional groups were characterized in TMB/NOx photooxidation, whereas several organosulfates (OSs) and nitrooxy organosulfates were identified in TMB/NOx/SO2 photooxidation based on HR-Q-TOFMS analysis. The formation mechanism relevant to the detected compounds in SOA were proposed. Based on our measurements, the photooxidation of TMB in the presence of SO2 may be a new source of OSs in the atmosphere. The results presented here also deepen the understanding of SOA formation under relatively complex polluted environments.


Subject(s)
Air Pollutants/analysis , Atmosphere , Aerosols , Benzene , Nitrogen Oxides , Oxidation-Reduction , Volatilization
18.
Sci Total Environ ; 723: 137987, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32224394

ABSTRACT

Aerosol samples from all over the word contained 2-methyltetrol sulfate ester (MTS). We investigated the role of MTS in new particle formation (NPF) with aerosol nucleation precursors, including sulfuric acid (SA), water (W), ammonia (N), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). The analysis was performed using quantum chemical approach, kinetic calculation and molecular dynamics (MD) simulations. The results proved that the molecular interactions in the clusters were mainly H-bonds and electrostatic interaction. The negative Gibbs free energy changes for all the studied MTS-containing clusters indicated that the formation of these clusters was thermodynamically favorable. The stability of the clusters was evaluated according to the total evaporation rate. Here, (MTS)(SA) and (MTS)(W) were the most and least stable cluster, respectively. MD simulations were used for time and spatial analysis of the role of the MTS-SA system. The results indicated that MTS can self-aggregate or absorb SA molecules into clusters, larger than the size of the critical cluster (approximately 1 nm), suggesting that MTS can initiate NPF by itself or together with SA.

19.
Chemosphere ; 214: 1-9, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30248553

ABSTRACT

In-cloud processing of volatile organic compounds is one of the significant routes leading to secondary organic aerosol (SOA) in the lower troposphere. In this study, we demonstrate that two atmospherically relevant α,ß-unsaturated carbonyls, i.e., but-3-en-2-on (methyl vinyl ketone, MVK) and 2-methylopropenal (methacrolein, MACR), undergo sulfate radical-induced transformations in dilute aqueous systems under photochemical conditions to form organosulfates previously identified in ambient aerosols and SOA generated in smog chambers. The photooxidation was performed under sun irradiation in unbuffered aqueous solutions containing carbonyl precursors at a concentration of 0.2 mmol and peroxydisulfate as a source of sulfate radicals (SO4-) at a concentration of 0.95 mmol. UV-vis analysis of solutions showed the fast decay of unsaturated carbonyl precursors in the presence of sulfate radicals. The observation confirms the capacity of sulfate radicals to transform the organic compounds into SOA components in atmospheric waters. Detailed interpretation of high-resolution negative ion electrospray ionization tandem mass spectra allowed to assign molecular structures to multiple aqueous organosulfate products, including an abundant isoprene-derived organosulfate C4H8SO7 detected at m/z 199. The results highlight the solar aqueous-phase reactions as a potentially significant route for biogenic SOA production in clouds at locations where isoprene oxidation occurs. A recent modelling study suggests that such processes could likely contribute to 20-30 Tg year-1 production of SOA, referred to as aqSOA, which is a non-negligible addition to the still underestimated budget of atmospheric aerosol.


Subject(s)
Acrolein/analogs & derivatives , Air Pollutants/chemistry , Butanones/chemistry , Water/chemistry , Acrolein/chemistry , Air Pollutants/analysis , Oxidation-Reduction , Water/analysis
20.
Chemosphere ; 216: 794-804, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30396140

ABSTRACT

We performed a laboratory investigation of the secondary organic aerosol (SOA) formation from cyclohexene photooxidation with different initial NOx and SO2 concentrations at low and high relative humidity (RH). Both SOA yield and number concentration first increase drastically and then, decreased when the [VOC]0/[NOx]0 ratio changed from 30 to 10 and from 10 to 3. Though the presence of SO2 could increase the SOA number concentration, the SOA yield could only increase under [VOC]0/[NOx]0 = 10 and high RH, and [VOC]0/[NOx]0 = 3 and low RH experimental conditions, while decreasing under [VOC]0/[NOx]0 = 10 and low RH conditions. In the presence of SO2, the high RH and high NOx conditions were keys to efficient sulfate formation and could promote the SOA formation. The chemical composition of SOA was characterized using hybrid quadrupole-orbitrap mass spectrometer equipped with electrospray ionization (ESI-Q-Orbitrap-HRMS), and few organosulfates were identified. A visible enhancement of organosulfates and the formation of high molecular weight organic compounds were observed at high RH conditions, and this seemed to be the reason for the SOA yield increase at high RH.


Subject(s)
Air Pollutants/chemistry , Cyclohexenes/metabolism , Humidity , Nitric Oxide/chemistry , Organic Chemicals/chemistry , Sulfur Dioxide/chemistry , Air Pollutants/analysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL