Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.494
Filter
1.
Eur J Cell Biol ; 103(3): 151440, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38954934

ABSTRACT

One of the deficits of knowledge on bone remodelling, is to what extent cells that are driven towards osteogenic differentiation can contribute to osteoclast formation. The periodontal ligament fibroblast (PdLFs) is an ideal model to study this, since they play a role in osteogenesis, and can also orchestrate osteoclastogenesis.when co-cultured with a source of osteoclast-precursor such as peripheral blood mononuclear cells (PBMCs). Here, the osteogenic differentiation of PdLFs and the effects of this process on the formation of osteoclasts were investigated. PdLFs were obtained from extracted teeth and exposed to osteogenic medium for 0, 7, 14, or 21 out of 21 days. After this 21-day culturing period, the cells were co-cultured with peripheral blood mononuclear cells (PBMCs) for an additional 21 days to study osteoclast formation. Alkaline phosphatase (ALP) activity, calcium concentration, and gene expression of osteogenic markers were assessed at day 21 to evaluate the different stages of osteogenic differentiation. Alizarin red staining and scanning electron microscopy were used to visualise mineralisation. Tartrate-resistant acid phosphatase (TRAcP) activity, TRAcP staining, multinuclearity, the expression of osteoclastogenesis-related genes, and TNF-α and IL-1ß protein levels were assessed to evaluate osteoclastogenesis. The osteogenesis assays revealed that PdLFs became more differentiated as they were exposed to osteogenic medium for a longer period of time. Mineralisation by these osteogenic cells increased with the progression of differentiation. Culturing PdLFs in osteogenic medium before co-culturing them with PMBCs led to a significant decrease in osteoclast formation. qPCR revealed significantly lower DCSTAMP expression in cultures that had been supplemented with osteogenic medium. Protein levels of osteoclastogenesis stimulator TNF-α were also lower in these cultures. The present study shows that the osteogenic differentiation of PdLFs reduces the osteoclastogenic potential of these cells. Immature cells of the osteoblastic lineage may facilitate osteoclastogenesis, whereas mature mineralising cells may suppress the formation of osteoclasts. Therefore, mature and immature osteogenic cells may have different roles in maintaining bone homeostasis.

2.
Lasers Med Sci ; 39(1): 174, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969931

ABSTRACT

PURPOSE: Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS: HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS: The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION: High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.


Subject(s)
Cell Differentiation , Dental Cementum , Lasers, Semiconductor , Osteogenesis , Humans , Lasers, Semiconductor/therapeutic use , Cell Differentiation/radiation effects , Osteogenesis/radiation effects , Dental Cementum/radiation effects , Dental Cementum/cytology , Alkaline Phosphatase/metabolism , Cells, Cultured , Low-Level Light Therapy/methods , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Collagen Type I/genetics , Collagen Type I/metabolism
3.
Int Endod J ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973098

ABSTRACT

AIM: The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear. This study investigates the role of DLX6 antisense RNA 1 (DLX6-AS1) in odonto/osteogenic differentiation induced by BMP9. METHODOLOGY: Custom RT2 profiler PCR array, quantitative Real-Time PCR (qRT-PCR) and western blots were used to investigate the expression pattern of DLX6-AS1 and its potential signal axis. Osteogenic ability was evaluated using alkaline phosphatase and alizarin red S staining. Interactions between lncRNA and miRNA, as well as miRNA and mRNA, were predicted through bioinformatic assays, which were subsequently validated via RNA immunoprecipitation and dual luciferase reporter assays. Student's t-test or one-way ANOVA with post hoc Tukey HSD tests were employed for data analysis, with a p-value of less than .05 considered statistically significant. RESULTS: DLX6-AS1 was upregulated upon BMP9 overexpression in DPCs, thereby promoting odonto/osteogenic differentiation. Additionally, miR-128-3p participated in BMP9-induced odonto/osteogenic differentiation by interacting with the downstream signal MAPK14. Modifying the expression of miR-128-3p and transfecting pcMAPK14/siMAPK14 had a rescue impact on odonto/osteogenic differentiation downstream of DLX6-AS1. Lastly, miR-128-3p directly interacted with both MAPK14 and DLX6-AS1. CONCLUSIONS: DLX6-AS1 could regulate the odonto/osteogenic differentiation of DPCs under the control of BMP9 through the miR-128-3p/MAPK14 axis.

4.
Ecotoxicol Environ Saf ; 282: 116655, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968871

ABSTRACT

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.

5.
Epigenetics ; 19(1): 2375011, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38956836

ABSTRACT

Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.


Subject(s)
Cell Differentiation , DNA Methylation , Mesenchymal Stem Cells , Osteogenesis , Synovial Membrane , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Swine , Synovial Membrane/cytology , Synovial Membrane/metabolism , Cells, Cultured , Epigenesis, Genetic
6.
J Orthop Surg Res ; 19(1): 386, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951811

ABSTRACT

BACKGROUND: Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS: We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS: Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION: Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Signal Transduction , Toxoplasma , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Humans , Animals , Signal Transduction/physiology , Cell Differentiation/physiology , Male , Toxoplasma/physiology , Rats , Smad Proteins/metabolism , Protozoan Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Cells, Cultured
7.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958998

ABSTRACT

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Subject(s)
Cell Differentiation , Mice, Inbred C57BL , MicroRNAs , Osteoblasts , Osteogenesis , Osteoporosis, Postmenopausal , Stress, Mechanical , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Female , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/therapy , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Mice , Osteogenesis/physiology , Humans , Signal Transduction , Cells, Cultured
8.
Bone ; : 117197, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986825

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) are integral to bone remodeling and homeostasis, as they are capable of differentiating into osteogenic and adipogenic lineages. This differentiation is substantially influenced by mechanosensitivity, particularly to tensile strain, which is a prevalent mechanical stimulus known to enhance osteogenic differentiation. This review specifically examines the effects of various cyclic tensile stress (CTS) conditions on BMSC osteogenesis. It delves into the effects of different loading devices, magnitudes, frequencies, elongation levels, dimensionalities, and coculture conditions, providing a comparative analysis that aids identification of the most conducive parameters for the osteogenic differentiation of BMSCs. Subsequently, this review delineates the signaling pathways activated by CTS, such as Wnt/ß-catenin, BMP, Notch, MAPK, PI3K/Akt, and Hedgehog, which are instrumental in mediating the osteogenic differentiation of BMSCs. Through a detailed examination of these pathways, this study elucidates the intricate mechanisms whereby tensile strain promotes osteogenic differentiation, offering valuable guidance for optimizing therapeutic strategies aimed at enhancing bone regeneration.

9.
Cell Signal ; 121: 111294, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996954

ABSTRACT

BACKGROUND: Osteoporosis (OP) is a prevalent disease associated with age, and one of the primary pathologies is the defect of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This study aimed to elucidate whether Nuclear Receptor Binding SET Domain Protein 2 (NSD2) transcriptionally regulates osteogenic differentiation of BMSCs in osteoporosis. METHODS: Identification of human BMSCs (hBMSCs) in vitro was measured by flow cytometry. Osteogenesis of hBMSCs in vitro was measured by Alizarin Red and Alkaline Phosphatase staining. The protein levels of H3K36me1/2/3, NSD2, and Hoxa2 were measured by western blotting. The mRNA levels of NSD2, Runx2, and BSP were measured by qPCR. The role of NSD2 in the osteogenic differentiation of BMSCs was further identified by silencing NSD2 via shRNA or overexpression of NSD2 via lentivirus transfection. The interactions of NSD2, H3K36me2 and Hoxa2 were identified via chromatin immunoprecipitation (ChIP). Luciferase reporting analysis was employed to confirm that NSD2 regulated the transcriptional activity of Hoxa2. Ovariectomized (OVX) was performed on mice to construct osteoporosis (OP) model. Subsequently, the bone mass was assessed by micro computed tomography (micro-CT) scan. RESULTS: During the osteogenesis of OP-derived hBMSCs, the levels of NSD2 and H3K36me2 significantly increased in 14 days of osteogenic induction. Inhibition of NSD2 via shRNA increased the RUNX2 and BSP expression of hBMSCs, while overexpression of NSD2 decreased RUNX2 and BSP expression of hBMSCs. ChIP analysis indicated NSD2-mediated H3K36me2 reduced the osteogenic differentiation of hBMSCs by regulating the osteogenic inhibitor Hoxa2. Accordingly, inhibition of NSD2 in vivo via tail vein injection of LV-shNSD2 lentivirus greatly alleviated OVX-induced osteoporosis in mice. CONCLUSION: We demonstrated that NSD2 inhibited the osteogenic differentiation in hBMSCs by transcriptionally downregulating Hoxa2 via H3K36me2 dimethylation. Inhibition of NSD2 effectively attenuated bone loss in murine osteoporosis and NSD2 is a promising target for clinical treatment of osteoporosis.

10.
Article in English | MEDLINE | ID: mdl-39001812

ABSTRACT

The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.

11.
Food Chem ; 459: 140359, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38996641

ABSTRACT

This study aimed to screen for a novel osteogenic peptide based on the calcium-sensing receptor (CaSR) and explore its molecular mechanism and gastrointestinal stability. In this study, a novel osteogenic peptide (Phe-Ser-Gly-Leu, FSGL) derived from bovine bone collagen hydrolysate was successfully screened by molecular docking and synthesised by solid phase peptide synthesis for further analysis. Cell experiments showed that FSGL significantly enhanced the osteogenic activity of MC3T3-E1 cells by acting on CaSR, including proliferation (152.53%), differentiation, and mineralization. Molecular docking and molecular dynamics further demonstrated that FSGL was a potential allosteric activator of CaSR, that turned on the activation switch of CaSR by closing the Venus flytrap (VFT) domain and driving the two protein chains in the VFT domain to easily form dimers. In addition, 96.03% of the novel osteogenic peptide FSGL was stable during gastrointestinal digestion. Therefore, FSGL showed substantial potential for enhancing the osteogenic activity of osteoblasts. This study provided new insights for the application of CaSR in the targeted screening of osteogenic peptides to improve bone health.

12.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955344

ABSTRACT

Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.


Subject(s)
Biocompatible Materials , Bone Cements , Calcium Phosphates , Cell Differentiation , Cell Proliferation , Chitosan , Compressive Strength , Magnesium Compounds , Materials Testing , Osteoblasts , Osteogenesis , Chitosan/chemistry , Chitosan/analogs & derivatives , Bone Cements/chemistry , Bone Cements/pharmacology , Osteogenesis/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Differentiation/drug effects , Animals , Cell Proliferation/drug effects , Mice , Osteoblasts/drug effects , Osteoblasts/cytology , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Phosphates
13.
Eur J Cancer ; 208: 114228, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39018632

ABSTRACT

RATIONALE: We report a phase II trial (OSAD93) testing CDDP with ifosfamide (IFO), without doxorubicin in neoadjuvant phase, in adult osteosarcoma with a 25 years follow-up. PATIENTS AND METHODS: This is a multicentric phase II study of neoadjuvant chemotherapy with IFO and CDDP in localized high-grade osteosarcoma of patients. Patients received 4 pre-operative courses of IFO 9 g/m2 and CDDP 100 mg/m2 on day 4 (SHOC regimen), followed by local treatment. Doxorubicin was added post-operatively (HOCA regimen) in patients with > 10 % residual tumor cells. A Good Histological Response (GHR), ie ≤ 10 % residual tumor cells in > 30 % of patients, was the primary objective. Disease-free survival (DFS), overall survival (OS) and toxicity were secondary objectives. RESULTS: From Jan 1994 to Jun 1998, 60 patients were included. Median age was 27 (range: 16-63). Primary tumor sites were limbs (76 %), trunk, head or neck (24 %). After neoadjuvant SHOC, grade 3-4 and febrile neutropenia, thrombopenia, and re-hospitalization occurred in 58 %, 17 %, 17 % and 22 % of SHOC courses and in 76 %, 28 %, 47 %, 47 % of HOCA courses, respectively. GHR was obtained in 16/60 (27.5 %) patients. With a median follow-up of 322 months, the DFS and OS were 51.8 % and 64.4 % at 5 years. At 10 years, DFS and OS were 49.9 % and 64.4 %. At 25 years, DFS and OS were 47.8 % and 55.9 %. No long-term cardiac toxicity was observed. Three patients developed a second malignancy (one fatal) after 300 months. CONCLUSION: Though the primary endpoint of OSAD93 was not met, this pre-operative doxorubicin-free regimen led to excellent long-term survival with limited toxicity in localized osteosarcoma.

14.
Acta Biomater ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997078

ABSTRACT

Biodegradable Zn alloys have significant application potential for hard-tissue implantation devices owing to their suitable degradation behavior and favorable biocompatibility. Nonetheless, pure Zn and its alloys in the as-cast state are mechanically instable and low in strength, which restricts their clinical applicability. Here, we report the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded Zn-5RE (wt.%, RE = rare earth of Y; or Ho; or Er) alloys intended for use in biodegradable bone substitutes. The microstructural characteristics, mechanical behavior, corrosion resistance, cytocompatibility, osteogenic differentiation, and capacity of osteogenesis in vivo of the Zn-5RE alloys are comparatively investigated. The Zn-5Y alloy demonstrates the best tensile properties, encompassing a 138 MPa tensile yield strength, a 302 MPa ultimate tensile strength, and 63% elongation, while the Zn-5Ho alloy shows the highest compression yield strength of 260 MPa and Vickers hardness of 104 HV. The Zn-5Er alloy shows a 126 MPa tensile yield strength, a 279 MPa ultimate tensile strength, 52% elongation, a 196 MPa compression yield strength, and a 101 HV Vickers microhardness. Further, the Zn-5Er alloy has a 130 µm per year corrosion rate in electrochemical tests and a 26 µm per year degradation rate in immersion tests, which is the lowest among the tested alloys. It also has the best in vitro osteogenic differentiation ability and capacity for osteogenesis and osteointegration in vivo after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications. STATEMENT OF SIGNIFICANCE: This work reports the exceptional mechanical, corrosion, and biocompatibility properties of hot-extruded (HE) Zn-5 wt.%-rare earth (Zn-5RE) alloys using single yttrium (Y), holmium (Ho), and erbium (Er) alloying for biodegradable bone-implant applications. Our findings demonstrate that the HE Zn-5Er alloy showed σuts of 279 MPa, tensile yield strength of 126 MPa, elongation of 51.6%, compression yield strength of 196 MPa, and microhardness of 101.2 HV. Further, HE Zn-5Er showed the lowest electrochemical corrosion rate of 130 µm/y and lowest degradation rate of 26 µm/y, and the highest in vitro osteogenic differentiation ability, in vivo osteogenesis, and osteointegration ability after implantation in rat femurs among the Zn-5RE alloys, indicating promising potential in load-bearing biodegradable internal bone-fixation applications.

15.
J Orthop Surg Res ; 19(1): 407, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014435

ABSTRACT

PURPOSE: Oncostatin M (OSM) is involved in the regulation of osteogenic differentiation and has a major role in the development of heterotopic ossification. The role of OSM in osteogenic differentiation of tendon-derived stem cells (TDSCs) and its mechanism have not been reported. This study aim to investigate the role of OSM in osteogenic differentiation of TDSCs and study the mechanism. METHODS: TDSCs were differentiated in osteogenic differentiation medium for 7 days. Recombinant OSM was added to the osteogenic differentiation medium for 7 and 14 days. The effect of Janus kinase 2 (JAK2) inhibitor AZD1480 and signal transducer and activator of transcription 3 (STAT3) inhibitor stattic in the presence of recombinant OSM on osteogenic differentiation of TDSCs was examined after differentiation for 7 and 14 days. Alkaline phosphatase and alizarin red staining were used to assess the effects on early and mid-stage osteogenic differentiation, respectively. Western blotting and qPCR were used to assess the expression of receptor and signalling pathway-related proteins and osteogenic marker genes, respectively. RESULTS: TDSCs were successfully induced to differentiate into osteoblasts. Recombinant OSM promoted osteogenic differentiation of TDSCs to early and mid-stages. After addition of AZD1480 or stattic, decreased alkaline phosphatase and alizarin red staining were observed in the early and mid-stages of osteogenic differentiation. Additionally, decreased expression of receptor and pathway-related proteins, and osteogenic genes was found by western blotting and qPCR, respectively. CONCLUSION: OSM promotes osteogenic differentiation of TDSCs and the JAK2/STAT3 signalling pathway plays an important role.


Subject(s)
Cell Differentiation , Janus Kinase 2 , Oncostatin M , Osteogenesis , STAT3 Transcription Factor , Signal Transduction , Stem Cells , Tendons , Oncostatin M/pharmacology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Osteogenesis/drug effects , Osteogenesis/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Tendons/cytology , Stem Cells/drug effects , Humans , Cells, Cultured , Animals
16.
J Agric Food Chem ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033544

ABSTRACT

Glucocorticoid-induced osteoporosis (GIOP) is the common reason for secondary osteoporosis. Dendrobine (DEN) is the major biologically active component of Dendrobium officinale with anti-inflammatory and antiaging properties. Whether DEN could alleviate osteogenic inhibition in GIOP rats is still unknown. The influence on osteogenic function caused by DEN on dexamethasone-treated bone marrow mesenchymal stem cells and rats was observed. The in vitro results showed that DEN reversed the inhibition of osteogenic differentiation by dexamethasone. Moreover, DEN supplementation attenuated dexamethasone-induced bone loss in vivo. DEN activated JNK and p38 MAPK pathways and restrained GR nuclear translocation, which could be prevented by the JNK (SP600125) or p38 (SB203580) pathway inhibitor. This study verified that DEN alleviated dexamethasone-induced nuclear translocation of GR, and inhibition of osteogenesis via JNK and p38 pathways, laying the foundation for DEN as a therapeutic agent for GIOP.

17.
Sci Rep ; 14(1): 15600, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971916

ABSTRACT

Binding of Staphylococcus aureus protein A (SPA) to osteoblasts induces apoptosis and inhibits bone formation. Bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to differentiate into bone, fat and cartilage. Therefore, it was important to analyze the molecular mechanism of SPA on osteogenic differentiation. We introduced transcript sequence data to screen out differentially expressed genes (DEGs) related to SPA-interfered BMSC. Protein-protein interaction (PPI) network of DEGs was established to screen biomarkers associated with SPA-interfered BMSC. Receiver operating characteristic (ROC) curve was plotted to evaluate the ability of biomarkers to discriminate between two groups of samples. Finally, we performed GSEA and regulatory analysis based on biomarkers. We identified 321 DEGs. Subsequently, 6 biomarkers (Cenpf, Kntc1, Nek2, Asf1b, Troap and Kif14) were identified by hubba algorithm in PPI. ROC analysis showed that six biomarkers could clearly discriminate between normal differentiated and SPA-interfered BMSC. Moreover, we found that these biomarkers were mainly enriched in the pyrimidine metabolism pathway. We also constructed '71 circRNAs-14 miRNAs-5 mRNAs' and '10 lncRNAs-5 miRNAs-2 mRNAs' networks. Kntc1 and Asf1b genes were associated with rno-miR-3571. Nek2 and Asf1b genes were associated with rno-miR-497-5p. Finally, we found significantly lower expression of six biomarkers in the SPA-interfered group compared to the normal group by RT-qPCR. Overall, we obtained 6 biomarkers (Cenpf, Kntc1, Nek2, Asf1b, Troap, and Kif14) related to SPA-interfered BMSC, which provided a theoretical basis to explore the key factors of SPA affecting osteogenic differentiation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , Cell Differentiation/genetics , Humans , Biomarkers/metabolism , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Protein Interaction Maps/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Gene Expression Profiling , Gene Regulatory Networks
18.
ACS Appl Bio Mater ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029129

ABSTRACT

Accidents, trauma, bone defects, and oncological processes significantly impact patients' health and quality of life. While calcium phosphates and bioactive glasses are commonly used as bone fillers to facilitate bone regeneration in orthopedics and traumatology, they exhibit certain disadvantages compared to calcium silicophosphate phases. This study evaluates the in vitro cytocompatibility and in vivo osteogenic properties of two-third-generation ceramic phases: silicocarnotite (SC) and nagelschmidtite (Nagel). These phases were synthesized via a solid-state reaction and characterized using X-ray diffraction and scanning electron microscopy. In vitro behavior was assessed through bioactivity tests, cell viability, proliferation, and inflammatory profiles by detecting cytokines and reactive oxygen species. Osteogenic properties were evaluated by detecting bone-associated proteins in MG-G3, hFOB1.19, and MC3T3-E1 cell lines after 3, 7, and 14 days. 45S5 Bioactive glass (BG), hydroxyapatite (HAp), and osteogenic medium were employed as control standards for bone formation. SC and Nagel phases exhibited higher viability percentages as well as osteoconductive and osteoinductive behavior. Finally, SC and Nagel bone grafts were implanted in a Wistar rat model to assess their in vivo ability to induce bone formation, demonstrating complete osseointegration after 12 weeks. Histological evaluation revealed osteocytes forming osteons and the presence of blood vessels, particularly in rats implanted with Nagel. Given their favorable biological performance, SC and Nagel emerge as promising candidates for bone grafts in orthopedics, traumatology, and maxillofacial surgery.

19.
Adv Med Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004219

ABSTRACT

PURPOSE: The process of osteogenic differentiation hinges upon the pivotal role of mechanical signals. Previous studies found that mechanical tensile strain of 2,500 microstrain (µÎµ) at a frequency of 0.5 Hz promoted osteogenesis in vitro. However, the mechanism of the mechanical strain influencing osteogenesis at the cellular and molecular levels are not yet fully understood. This study aimed to explore the mechanism of mechanical strain on osteogenic differentiation of MC3T3-E1 cells. MATERIALS AND METHODS: Proteomics analysis was conducted to explore the mechanical strain that significantly impacted the protein expression. Bioinformatics identified important mechanosensitive proteins and the expression of genes was investigated using real-time PCR. The dual-luciferase assay revealed the relationship between the miRNA and its target gene. Overexpression and downexpression of the gene, to explore its role in mechanically induced osteogenic differentiation and transcriptomics, revealed further mechanisms in this process. RESULTS: Proteomics and bioinformatics identified an important mechanosensitive lowexpression protein ATP13A3, and the expression of Atp13a3 gene was also reduced. The dual-luciferase assay revealed that microRNA-3070-3p (miR-3070-3p) targeted the Atp13a3 gene. Furthermore, the downexpression of Atp13a3 promoted the expression levels of osteogenic differentiation-related genes and proteins, and this process was probably mediated by the tumor necrosis factor (TNF) signaling pathway. CONCLUSION: Atp13a3 responded to mechanical tensile strain to regulate osteogenic differentiation, and the TNF signaling pathway regulated by Atp13a3 was probably involved in this process. These novel insights suggested that Atp13a3 was probably a potential osteogenesis and bone formation regulator.

20.
Cureus ; 16(6): e62351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006559

ABSTRACT

BACKGROUND: Stem cells of mesenchymal origin have good proliferative capacity when compared to other stem cell types. Dental pulp stem cells (DPSCs) are a variety of mesenchymal cells obtained from the pulpal tissue of teeth and are abundantly available and easy to obtain. DPSCs facilitate and improve the formation of new bone using different bone graft scaffolds. This present study aims to evaluate and compare the osteogenic potential of DPSCs on alloplastic and xenogeneic bone grafts. MATERIALS AND METHODS: Hydroxyapatite and beta-tricalcium bone graft and bovine bone graft were used in a triplicate manner in the laboratory. DPSCs were obtained from the pulpal tissue of extracted third molars in the laboratory. The cytotoxicity, osteogenic potential, and difference in the rate of proliferation of mesenchymal cells on the biomaterials were assessed. RESULTS: Darker purple staining was seen in the case of hydroxyapatite/beta-tricalcium bone graft on MTT colorimetric assay stating that there was an increase in cell viability in hydroxyapatite/beta-tricalcium bone graft as compared to the bovine bone graft. Hydroxyapatite/beta-tricalcium bone graft showed more osteogenic potential as compared to the bovine bone graft as a higher degree of red staining was seen in Alizarin staining. CONCLUSION: Higher cell viability and higher osteogenic proliferation and differentiation were seen on the hydroxyapatite/beta-tricalcium bone graft compared to the bovine bone scaffold.

SELECTION OF CITATIONS
SEARCH DETAIL