Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Dev Dyn ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351969

ABSTRACT

BACKGROUND: The mechanisms underlying the formation of complex structures such as during the outgrowth of the cochlear duct are still poorly understood. RESULTS: We have analyzed the morphological and molecular changes associated with cochlear development in mouse mutants for the transcription factor Meis2, which show defective coiling of the cochlea. These morphological abnormalities were accompanied by the formation of ectopic and extra rows of sensory hair cells. Gene profiling of otic vesicles from Meis2 mutants revealed a dysregulation of genes that are potentially involved in Sonic hedgehog (Shh)-mediated patterning of the cochlear duct. Like in Shh mutants, Meis2 defective mice showed a loss of genes that are expressed in the apical part of the cochlear duct. CONCLUSIONS: Taken together, these data reveal that the loss of Meis2 leads to a phenotype that resembles Shh mutants, suggesting that Meis2 is instrumental for cochlear Shh signaling. The modulation of the same subset of genes provides an interesting insight into which Shh responsive genes are essential for outgrowth and patterning of the cochlear duct.

2.
Genesis ; 62(1): e23580, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974491

ABSTRACT

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Subject(s)
Neural Crest , Transcription Factors , Neural Crest/metabolism , Transcription Factors/metabolism , Head , Skull/metabolism , Ribosomes/metabolism , Gene Expression Regulation, Developmental
3.
Dev Genes Evol ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37815616

ABSTRACT

As proposed by Wilhelm Roux in 1885, the key goal of experimental embryology ("Entwicklungsmechanik") was to elucidate whether organisms or their parts develop autonomously ("self-differentiation") or require interactions with other parts or the environment. However, experimental embryologists soon realized that concepts like "self-differentiation" only make sense when applied to particular parts or units of the developing embryo as defined both in time and space. Whereas the formation of tissues or organs may initially depend on interactions with surrounding tissues, they later become independent of such interactions or "determined." Moreover, the determination of a particular tissue or organ primordium has to be distinguished from the spatially coordinated determination of its parts-what we now refer to as "patterning." While some primordia depend on extrinsic influences (e.g., signals from adjacent tissues) for proper patterning, others rely on intrinsic mechanisms. Such intrinsically patterned units may behave as "morphogenetic fields" that can compensate for lost parts and regulate their size and proper patterning. While these insights were won by experimental embryologists more than 100 years ago, they retain their relevance today. To enable the generation of more life-like organoids in vitro for studying developmental processes and diseases in a dish, questions about the spatiotemporal units of development (when and how tissues and organs are determined and patterned) need to be increasingly considered. This review briefly sketches this conceptual history and its continued relevance by focusing on the determination and patterning of the inner ear with a specific emphasis on some studies published in this journal.

4.
Front Cell Dev Biol ; 11: 1274788, 2023.
Article in English | MEDLINE | ID: mdl-37854072

ABSTRACT

Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.

5.
Dev Dyn ; 252(12): 1407-1427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37597164

ABSTRACT

BACKGROUND: Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS: Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS: Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.


Subject(s)
Ectoderm , Neural Crest , Neural Crest/metabolism , Skull/metabolism , Embryonic Development/genetics , Sulfotransferases/genetics , Sulfotransferases/metabolism , Gene Expression Regulation, Developmental
6.
Cell Rep ; 42(6): 112545, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37227818

ABSTRACT

An abundance of research has recently highlighted the susceptibility of cochleovestibular ganglion (CVG) neurons to noise damage and aging in the adult cochlea, resulting in hearing deficits. Furthering our understanding of the transcriptional cascades that contribute to CVG development may provide insight into how these cells can be regenerated to treat inner ear dysfunction. Here we perform a high-depth single-cell RNA sequencing analysis of the E10.5 otic vesicle and its surrounding tissues, including CVG precursor neuroblasts and emerging CVG neurons. Clustering and trajectory analysis of otic-lineage cells reveals otic markers and the changes in gene expression that occur from neuroblast delamination toward the development of the CVG. This dataset provides a valuable resource for further identifying the mechanisms associated with CVG development from neurosensory competent cells within the otic vesicle.


Subject(s)
Cochlea , Neural Stem Cells , Mice , Animals , Neural Stem Cells/metabolism , Neurons , Gene Expression Regulation, Developmental
7.
Aquat Toxicol ; 259: 106539, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086653

ABSTRACT

Dioxins are a class of highly toxic and persistent environmental pollutants that have been shown through epidemiological and laboratory-based studies to act as developmental teratogens. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent dioxin congener, has a high affinity for the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. TCDD-induced AHR activation during development impairs nervous system, cardiac, and craniofacial development. Despite the robust phenotypes previously reported, the characterization of developmental malformations and our understanding of the molecular targets mediating TCDD-induced developmental toxicity remains limited. In zebrafish, TCDD-induced craniofacial malformations are produced, in part, by the downregulation of SRY-box transcription factor 9b (sox9b), a member of the SoxE gene family. sox9b, along with fellow SoxE gene family members sox9a and sox10, have important functions in the development of the otic placode, the otic vesicle, and, ultimately, the inner ear. Given that sox9b is a known target of TCDD and that transcriptional interactions exist among SoxE genes, we asked whether TCDD exposure impaired the development of the zebrafish auditory system, specifically the otic vesicle, which gives rise to the sensory components of the inner ear. Using immunohistochemistry, in vivo confocal imaging, and time-lapse microscopy, we assessed the impact of TCDD exposure on zebrafish otic vesicle development. We found exposure resulted in structural deficits, including incomplete pillar fusion and altered pillar topography, leading to defective semicircular canal development. The observed structural deficits were accompanied by reduced collagen type II expression in the ear. Together, our findings reveal the otic vesicle as a novel target of TCDD-induced toxicity, suggest that the function of multiple SoxE genes may be affected by TCDD exposure, and provide insight into how environmental contaminants contribute to congenital malformations.


Subject(s)
Dioxins , Ear, Inner , Polychlorinated Dibenzodioxins , Water Pollutants, Chemical , Animals , Zebrafish/genetics , Zebrafish/metabolism , Polychlorinated Dibenzodioxins/toxicity , Dioxins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Persistent Organic Pollutants/metabolism , Water Pollutants, Chemical/toxicity , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Ear, Inner/metabolism
8.
J Anat ; 243(1): 78-89, 2023 07.
Article in English | MEDLINE | ID: mdl-36748120

ABSTRACT

Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.


Subject(s)
Semicircular Canals , Zebrafish , Animals , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Epithelium/metabolism , Morphogenesis/physiology , Gene Expression Regulation, Developmental
9.
Dev Biol ; 494: 71-84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36521641

ABSTRACT

The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.


Subject(s)
Ear, Inner , Animals , Cell Differentiation/genetics , Ear, Inner/metabolism , Gene Expression Regulation, Developmental/genetics , Mammals/metabolism , Morphogenesis , Nervous System/metabolism , Transcription Factors/metabolism , T-Box Domain Proteins
10.
Biochem Biophys Res Commun ; 623: 96-103, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35878429

ABSTRACT

The transcription factor FOXG1 plays an important role in inner ear development; however, the cis-regulatory mechanisms controlling the inner-ear-specific expression of FOXG1 are poorly understood. In this study, we aimed to identify the element that specifically regulates FoxG1 expression in the otic vesicle, which develops into the inner ear, through comparative genome analysis between vertebrate species and chromatin immunoprecipitation. The cis-regulatory element (E2) identified showed high evolutionary conservation among vertebrates in the genomic DNA of FoxG1 spanning approximately 3 Mbp. We identified core sequences important for the activity of the otic-vesicle-specific enhancer through in vitro and in vivo reporter assays for various E2 enhancer mutants and determined the consensus sequence for SOX DNA binding. In addition, SoxE, a subfamily of the Sox family, was simultaneously expressed in the otic vesicles of developing embryos and showed a similar protein expression pattern as that of FoxG1. Furthermore, SOXE transcription factors induced specific transcriptional activity through the FoxG1 Otic enhancer (E2b). These findings suggest that the interaction between the otic enhancer of FoxG1 and SOXE transcription factor, in which the otic expression of FoxG1 is evolutionarily well-conserved, is important during early development of the inner ear, a sensory organ important for survival in nature.


Subject(s)
Ear, Inner , SOXE Transcription Factors , Animals , DNA/metabolism , Ear, Inner/metabolism , Gene Expression Regulation, Developmental , SOXE Transcription Factors/genetics , Transcription Factors/metabolism
11.
Genesis ; 59(12): e23453, 2021 12.
Article in English | MEDLINE | ID: mdl-34664392

ABSTRACT

The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.


Subject(s)
Branchio-Oto-Renal Syndrome/genetics , Congenital Abnormalities/genetics , Hearing Loss/genetics , Homeodomain Proteins/genetics , Xenopus Proteins/genetics , Animals , Branchial Region/growth & development , Branchial Region/pathology , Branchio-Oto-Renal Syndrome/physiopathology , CRISPR-Cas Systems/genetics , Congenital Abnormalities/pathology , Embryonic Development/genetics , Ganglia, Parasympathetic/growth & development , Ganglia, Parasympathetic/pathology , Gene Expression , Gene Expression Regulation, Developmental/genetics , Hearing Loss/physiopathology , Humans , Neural Tube/growth & development , Neural Tube/pathology , Skull/growth & development , Skull/pathology , Transcription Factors/genetics , Xenopus/genetics , Xenopus/growth & development
12.
Front Neuroanat ; 15: 722374, 2021.
Article in English | MEDLINE | ID: mdl-34616280

ABSTRACT

Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.

13.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34414417

ABSTRACT

Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.


Subject(s)
Bone Development , Homeodomain Proteins/metabolism , Metalloproteins/metabolism , Nuclear Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Branchio-Oto-Renal Syndrome/embryology , Branchio-Oto-Renal Syndrome/genetics , Cell Nucleus/metabolism , Ear, Inner/embryology , Ear, Inner/metabolism , Ectoderm/embryology , Ectoderm/metabolism , Gene Expression , Homeodomain Proteins/genetics , Larva/growth & development , Metalloproteins/genetics , Neural Crest/embryology , Neural Crest/metabolism , Nuclear Proteins/genetics , Protein Binding , Protein Tyrosine Phosphatases/metabolism , Transcriptional Activation , Xenopus Proteins/genetics , Xenopus laevis
14.
Front Cell Dev Biol ; 9: 663995, 2021.
Article in English | MEDLINE | ID: mdl-34046408

ABSTRACT

Hereditary hearing loss caused by defective hair cells is one of the most common congenital diseases, whose nosogenesis is still unclear because many of the causative genes remain unidentified. Claudins are one kind of transmembrane proteins that constitute the most important components of the tight junctions and paracellular barrier and play important roles in neurodevelopment. In this study, we investigated the function of claudin h in morphogenesis and auditory function of the hair cell in zebrafish. The results of in situ hybridization showed that claudin h was specifically localized in the otic vesicle and neuromasts in zebrafish embryos. The deficiency of claudin h caused significant reduction of otic vesicle size and loss of utricle otolith. Moreover, the startle response and vestibulo-ocular reflex experiments revealed that loss of claudin h led to serious hearing loss and vestibular dysfunction. Importantly, the confocal microscopy observation found that compared to the control zebrafish, the claudin h morphants and mutants displayed significantly reduced the number of cristae hair cells and shortened kinocilia. Besides, the deficiency of claudin h also caused the loss of hair cells in neuromasts which could be rescued by injecting claudin h mRNA into the mutant embryos at one cell stage. Furthermore, the immunohistochemistry experiments demonstrated remarkable apoptosis of hair cells in the neuromasts, which might contribute to the loss of hair cells number. Overall, these data indicated that claudin h is indispensable for the development of hair cells, vestibular function, and hearing ability of zebrafish.

15.
Development ; 148(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33795231

ABSTRACT

All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.


Subject(s)
Apoptosis , Ear, Inner/embryology , Gene Expression Regulation, Developmental , Organogenesis , Signal Transduction , T-Box Domain Proteins/biosynthesis , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Mice , Mice, Knockout , T-Box Domain Proteins/genetics
16.
Dev Dyn ; 250(11): 1524-1551, 2021 11.
Article in English | MEDLINE | ID: mdl-33830554

ABSTRACT

Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.


Subject(s)
Ear, Inner , Models, Animal , Zebrafish , Animals , Ear, Inner/metabolism , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Mammals/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
17.
Dev Biol ; 469: 160-171, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33131705

ABSTRACT

The inner ear comprises four epithelial domains: the cochlea, vestibule, semicircular canals, and endolymphatic duct/sac. These structures are segregated at embryonic day 13.5 (E13.5). However, these four anatomical structures remain undefined at E10.5. Here, we aimed to identify lineage-specific genes in the early developing inner ear using published data obtained from single-cell RNA-sequencing (scRNA-seq) of embryonic mice. We downloaded 5000 single-cell transcriptome data, named 'auditory epithelial trajectory', from the Mouse Organogenesis Cell Atlas. The dataset was supposed to include otic epithelial cells at E9.5-13.5. We projected the 5000 â€‹cells onto a two-dimensional space encoding the transcriptional state and visualised the pattern of otic epithelial cell differentiation. We identified 15 clusters, which were annotated as one of the four components of the inner ear epithelium using known genes that characterise the four different tissues. Additionally, we classified 15 clusters into sub-regions of the four inner ear components. By comparing transcriptomes between these 15 clusters, we identified several candidates of lineage-specific genes. Characterising these new candidate genes will help future studies about inner ear development.


Subject(s)
Ear, Inner/embryology , Ear, Inner/metabolism , Animals , Cell Differentiation/genetics , Cochlea/metabolism , Computer Simulation , Ear, Inner/cytology , Embryo, Mammalian/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , In Situ Hybridization , Mice , Mice, Inbred ICR , RNA, Messenger/metabolism , RNA-Seq , Single-Cell Analysis , Vestibule, Labyrinth/metabolism
18.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190163, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31884918

ABSTRACT

The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Subject(s)
Cilia/physiology , Ear, Inner/embryology , Lateral Line System/embryology , Zebrafish/physiology , Animals , Cell Movement , Ear, Inner/physiology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/physiology , Hair Cells, Auditory/physiology , Lateral Line System/physiology , Otolithic Membrane/embryology , Zebrafish/embryology
19.
Development ; 146(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31488567

ABSTRACT

The mammalian cochlea develops from a ventral outgrowth of the otic vesicle in response to Shh signaling. Mouse embryos lacking Shh or its essential signal transduction components display cochlear agenesis; however, a detailed understanding of the transcriptional network mediating this process is unclear. Here, we describe an integrated genomic approach to identify Shh-dependent genes and associated regulatory sequences that promote cochlear duct morphogenesis. A comparative transcriptome analysis of otic vesicles from mouse mutants exhibiting loss (Smoecko ) and gain (Shh-P1) of Shh signaling reveal a set of Shh-responsive genes partitioned into four expression categories in the ventral half of the otic vesicle. This target gene classification scheme provides novel insight into several unanticipated roles for Shh, including priming the cochlear epithelium for subsequent sensory development. We also mapped regions of open chromatin in the inner ear by ATAC-seq that, in combination with Gli2 ChIP-seq, identified inner ear enhancers in the vicinity of Shh-responsive genes. These datasets are useful entry points for deciphering Shh-dependent regulatory mechanisms involved in cochlear duct morphogenesis and establishment of its constituent cell types.


Subject(s)
Cochlea/embryology , Cochlea/metabolism , Genome , Hedgehog Proteins/metabolism , Morphogenesis/genetics , Animals , Base Sequence , Embryo, Mammalian/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Mice, Transgenic , Reproducibility of Results
20.
Hear Res ; 376: 86-96, 2019 05.
Article in English | MEDLINE | ID: mdl-30711386

ABSTRACT

The development of the inner ear complex cytoarchitecture and functional geometry requires the exquisite coordination of a variety of cellular processes in a temporal manner. At early stages of inner ear development several rounds of cell proliferation in the otocyst promote the growth of the structure. The apoptotic program is initiated in exceeding cells to adjust cell type numbers. Apoptotic cells are cleared by phagocytic cells that recognize the phosphatidylserine residues exposed in the cell membrane thanks to the energy supplied by autophagy. Specific molecular programs determine hair and supporting cell fate, these populations are responsible for the functions of the adult sensory organ: detection of sound, position and acceleration. The neurons that transmit auditory and balance information to the brain are also born at the otocyst by neurogenesis facilitated by autophagy. Cellular senescence participates in tissue repair, cancer and aging, situations in which cells enter a permanent cell cycle arrest and acquire a highly secretory phenotype that modulates their microenvironment. More recently, senescence has also been proposed to take place during vertebrate development in a limited number of transitory structures and organs; among the later, the endolymphatic duct in the inner ear. Here, we review these cellular processes during the early development of the inner ear, focusing on how the most recently described cellular senescence participates and cooperates with proliferation, apoptosis and autophagy to achieve otic morphogenesis and differentiation.


Subject(s)
Ear, Inner/embryology , Animals , Apoptosis/physiology , Autophagy/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Cellular Senescence/physiology , Ear, Inner/cytology , Ear, Inner/physiology , Humans , Mice , Models, Biological , Morphogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL