Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Environ Int ; 187: 108710, 2024 May.
Article in English | MEDLINE | ID: mdl-38701644

ABSTRACT

Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time-to-pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (DDE), 2,3,3',4,4',5-hexachlorobiphenyl (PCB156), 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro. We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA-sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase (ENO1), lactate dehydrogenase A (LDHA), cytochrome C oxidase subunit 4I1 (COX4I1), ATP synthase F1 subunit alpha (ATP5A), and glutathione peroxidase 4 (GPX4) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP-mediated interference of follicle growth in human ovaries.


Subject(s)
Energy Metabolism , Fluorocarbons , Ovary , Persistent Organic Pollutants , Humans , Female , Ovary/drug effects , Ovary/metabolism , Energy Metabolism/drug effects , Fluorocarbons/toxicity , Homeostasis/drug effects , Cell Line, Tumor , Polychlorinated Biphenyls/toxicity , Dichlorodiphenyl Dichloroethylene/toxicity , Alkanesulfonic Acids/toxicity , Hexachlorobenzene/toxicity
2.
Reprod Biomed Online ; 49(2): 103938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759499

ABSTRACT

RESEARCH QUESTION: Does adipose-tissue-derived stem cell conditioned medium (ASC-CM) supplementation enhance follicle and stromal cell outcomes in vitro? DESIGN: Bovine ovaries (n = 8) were sectioned and cultured in vitro for 8 days in two different groups: (i) standard culture (OT Ctrl D8); and (ii) culture with ASC-CM supplementation (OT + CM D8). Half of the culture medium was replaced every other day, and stored to measure the production of oestradiol. Follicle classification was established using haematoxylin and eosin staining. Follicle and stromal cell DNA fragmentation was assessed by TUNEL assays, while growth differentiation factor-9 (GDF-9) staining served as a marker of follicle quality. Additionally, three factors, namely vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and transforming growth factor beta 1 (TGF-ß1), were evaluated in ASC-CM in order to appraise the potential underlying mechanisms of action of ASC. RESULTS: The OT + CM D8 group showed a significantly higher proportion of secondary follicles (P = 0.02) compared with the OT Ctrl D8 group. The OT + CM D8 group also demonstrated significantly lower percentages of TUNEL-positive follicles (P = 0.014) and stromal cells (P = 0.001) compared with the OT Ctrl D8 group. Furthermore, follicles in the OT + CM D8 group exhibited a significant increase (P = 0.002) in expression of GDF-9 compared with those in the OT Ctrl D8 group, and oestradiol production was significantly higher (P = 0.04) in the OT + CM D8 group. All studied factors were found to be present in ASC-CM. VEGF and IL-6 were the most widely expressed factors, while TGF-ß1 showed the lowest expression. CONCLUSIONS: Addition of ASC-CM to culture medium enhances follicle survival, development and oestradiol production, and promotes the viability of stromal cells. VEGF, IL-6 and TGF-ß1 could be paracrine mediators underlying the beneficial effects.


Subject(s)
Adipose Tissue , Ovarian Follicle , Stromal Cells , Animals , Female , Cattle , Ovarian Follicle/metabolism , Ovarian Follicle/cytology , Stromal Cells/metabolism , Stromal Cells/cytology , Culture Media, Conditioned/pharmacology , Adipose Tissue/cytology , Ovary/cytology , Ovary/metabolism , Estradiol/metabolism , Tissue Culture Techniques , Stem Cells/cytology , Stem Cells/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Interleukin-6/metabolism
3.
Theriogenology ; 183: 120-131, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35247849

ABSTRACT

In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.


Subject(s)
Dextrans , Hydrogels , Animals , Dextrans/pharmacology , Female , Hydrogels/pharmacology , Mice , Oligopeptides/pharmacology , Ovarian Follicle
4.
Pesqui. vet. bras ; 39(1): 85-92, Jan. 2019. ilus
Article in English | LILACS, VETINDEX | ID: biblio-990234

ABSTRACT

This study evaluated the effect of Morus nigra leaf extract, with or without supplementation, on morphology, activation and DNA damage of preantral follicles cultured within sheep ovarian tissue. Ovaries were collected and divided into fragments, being one fixed for histological and Terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick-end labeling (TUNEL) analysis (fresh control). The remaining fragments were cultured for 7 days in alpha minimum essential media (α-MEM) supplemented with bovine serum albumin (BSA), insulin, transferrin, selenium, glutamine, hypoxanthine and ascorbic acid (α-MEM+; control medium) or into medium composed of M. nigra extract without supplements (0.1; 0.2 or 0.4mg/mL) or supplemented with the same substances described above for α-MEM+ (MN 0.1+; 0.2+ or 0.4+mg/mL). Then, tissues were destined to histological and TUNEL analysis. The α-MEM+ treatment had more morphologically normal follicles than all M. nigra extract treatments. However, α-MEM+ treatment also showed signs of atresia because the percentage of TUNEL positive cells was similar in α-MEM+ and in 0.1mg/mL M. nigra without and with supplements. Moreover, a reduction in the primordial follicles and an increase in the growing ones were observed in all treatments, except 0.2mg/mL M. nigra. In conclusion, the follicles cultured at 0.1mg/mL M. nigra extract were in good condition and able to continue their development, as demonstrated by the same rates of DNA damage and follicular activation as the control medium.(AU)


Este estudo avaliou o efeito do extrato das folhas de Morus nigra, com ou sem suplementos, sobre a morfologia, a ativação e o dano ao DNA de folículos pré-antrais cultivados inclusos em tecido ovariano. Os ovários foram coletados e divididos em fragmentos, sendo um fixado para análise histológica e ensaio de marcação de terminações dUTP mediada por desoxinucleotidil transferase terminal (TUNEL) (controle fresco). Os fragmentos restantes foram cultivados durante 7 dias em meio essencial mínimo alfa (α-MEM) suplementado com albumina sérica bovina (BSA), insulina, transferrina, selênio, glutamina, hipoxantina e ácido ascorbico (α-MEM+; meio controle) ou em meio composto de extrato de M. nigra sem suplementos (0,1; 0,2 or 0,4mg/mL) ou suplementado com as mesmas substâncias descritas para α-MEM+ (MN 0,1+; 0,2+ or 0,4+mg/mL). Então, os tecidos foram destinados à análise histológica e TUNEL. O tratamento do α-MEM+ apresentou mais folículos morfologicamente normais que todos os tratamentos do extrato de M. nigra. No entanto, o tratamento com α-MEM+ também mostrou sinais de atresia, pois a porcentagem de células TUNEL positivas foi semelhante em α-MEM+ e em 0,1mg/mL M. nigra sem e com suplementos. Além disso, observou-se uma redução nos folículos primordiais e um aumento nos folículos em crescimento em todos os tratamentos, exceto 0,2mg/mL M. nigra. Em conclusão, os folículos cultivados com 0,1mg/mL de extrato de M. nigra estavam em boas condições e aptos a continuar seu desenvolvimento, como demonstrado pelas taxas de dano ao DNA e de ativação folicular semelhantes ao meio controle.(AU)


Subject(s)
Animals , Female , Oocytes/growth & development , Ovary/cytology , DNA Damage , Sheep , Morus , Ovarian Follicle , In Vitro Techniques
5.
Reprod Med Biol ; 16(1): 21-27, 2017 01.
Article in English | MEDLINE | ID: mdl-29259446

ABSTRACT

The number of ovulated oocytes is different among mammals but does not vary much within the same species. In order to sustain periodic ovulation, follicular development must be coordinated at the tissue level. Elucidating the regulatory mechanisms of follicular development is difficult because the ovary has a complicated structure and it takes a long time for primordial follicles to develop into Graafian follicles. Therefore, it is not possible to observe follicular development by conventional experiments. The authors previously developed a new ovarian tissue culture method that enabled the observation of follicular development from the early follicle stage. These findings indicated that follicular interactions are important in regulating follicular development and ovulation. This review describes the current methods of observing follicular development in the ovary and the regulatory mechanisms of follicular development.

6.
Mol Hum Reprod ; 22(5): 338-49, 2016 05.
Article in English | MEDLINE | ID: mdl-26908644

ABSTRACT

STUDY HYPOTHESIS: Is the c-Jun-N-terminal kinase (JNK) pathway implicated in primordial follicle activation? STUDY FINDING: Culture of ovine ovarian cortex in the presence of two different c-Jun phosphorylation inhibitors impeded pre-antral follicle activation. WHAT IS KNOWN ALREADY: Despite its importance for fertility preservation therapies, the mechanisms of primordial follicle activation are poorly understood. Amongst different signalling pathways potentially involved, the JNK pathway has been previously shown to be essential for cell cycle progression and pre-antral follicle development in mice. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Ovine ovarian cortex pieces were cultured with varying concentrations of SP600125, JNK inhibitor VIII or anti-Mullerian hormone (AMH) in the presence of FSH for 9 days. Follicular morphometry and immunohistochemistry for proliferating cell nuclear antigen (PCNA), apoptosis and follicle activation (Foxo3a) were assessed. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of primordial follicle activation occurred in the presence of SP600125, JNK inhibitor VIII and AMH when compared with controls (all P < 0.05) after 2 days of culture. However, only in the highest concentrations used was the inhibition of activation associated with induction of follicular apoptosis (P < 0.05). In growing follicles, PCNA antigen expression was reduced when the JNK inhibitors or AMH were used (P < 0.05 versus control), indicating reduced proliferation of the somatic compartment. LIMITATIONS, REASONS FOR CAUTION: Although we evaluated the effects of inhibition of c-Jun phosphorylation on primordial follicle development, we did not determine the cellular targets and mechanism of action of the inhibitors. WIDER IMPLICATIONS OF THE FINDINGS: These results are the first to implicate the JNK pathway in primordial follicle activation and could have significant consequences for the successful development of fertility preservation strategies and our understanding of primordial follicle activation. LARGE SCALE DATA: n/a. STUDY FUNDING AND COMPETING INTERESTS: Dr Michael J. Bertoldo and the laboratories involved in the present study were supported by a grant from 'Région Centre' (CRYOVAIRE, Grant number #320000268). There are no conflicts of interest to declare.


Subject(s)
Ovarian Follicle/metabolism , Ovary/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Animals , Anthracenes/pharmacology , Anti-Mullerian Hormone/pharmacology , Female , Follicle Stimulating Hormone/pharmacology , Ovarian Follicle/drug effects , Ovary/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-jun/antagonists & inhibitors , Sheep , Signal Transduction/drug effects
7.
Biol Reprod ; 93(1): 18, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26040674

ABSTRACT

Leukemia inhibitory factor (LIF) is expressed in the ovary and controls follicular growth. LIF has been reported to accelerate the primordial to primary follicle transition, the growth of cultured preantral follicles, and the maturation of oocytes. Previous reports on factors that regulate follicular growth have largely employed cultured follicles. However, there are several types of follicles and somatic cells in the ovary that are likely to interact with one another to regulate follicular growth. Therefore, a novel approach is essential for understanding the function of factors that regulate follicular growth in the ovary. In this study, we evaluated the function of LIF using cultured ovarian tissue. Ovarian tissue slices were cultured in the presence or absence of recombinant LIF and neutralizing anti-LIF antibody to enable continuous monitoring of follicular growth within the context of the ovary as well as analysis of the process of follicular growth. The results revealed that LIF inhibited the growth of primary, secondary, and antral follicles. Furthermore, we verified the inhibitory function of LIF using the neutralizing antibody, which accelerated follicular growth. These results suggest that LIF is likely to coordinate follicular growth in the ovary. The culture and analysis methods employed in this study are thus effective for clarifying the tissue-level functions of factors that regulate follicular growth within the ovary.


Subject(s)
Leukemia Inhibitory Factor/pharmacology , Ovarian Follicle/drug effects , Ovary/drug effects , Animals , Antibodies, Neutralizing/pharmacology , Female , Leukemia Inhibitory Factor/immunology , Mice , Mice, Inbred ICR , Ovarian Follicle/growth & development , Ovary/growth & development , Tissue Culture Techniques
8.
Fertil Steril ; 102(3): 864-870.e2, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24996500

ABSTRACT

OBJECTIVE: To evaluate the impact of dynamic in vitro culture on initiation of early follicular growth in prepubertal mouse ovaries. DESIGN: Ovaries from 8-day-old BALB/c mice were cultured either in a dynamic system (n=28) or in a static system (n=20) for 4 days. Uncultured 8-day-old (n=9) or 12-day-old (n=17) ovaries served as baseline or in vivo controls, respectively. SETTING: Academic research center. ANIMAL(S): Newborn female BALB/c mice (n=37). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Histologic follicle classification and counting and assessment of follicular viability via immunofluorescent staining. RESULT(S): The percentage of secondary follicles after dynamic culture was identical to the 12-day-old in vivo control. In contrast, after static culture ovaries showed a significantly higher percentage of secondary follicles. For immunofluorescent viability assessment 6.78 follicles per ovary could be isolated after dynamic culture, whereas only 3.8 follicles per ovary could be isolated after static culture. CONCLUSION(S): Dynamic in vitro culture supports physiologic follicular growth initiation, comparable to that observed in vivo. In contrast, accelerated follicular growth was observed after static culture. These findings add additional evidence to the idea that dynamic culture might be a beneficial first step to initiate follicle growth in vitro within the context of fertility preservation.


Subject(s)
Cell Culture Techniques/methods , Ovarian Follicle/physiology , Animals , Animals, Newborn , Cell Count , Cell Survival , Cells, Cultured , Female , Fluorescent Antibody Technique , In Vitro Oocyte Maturation Techniques/methods , Mice , Mice, Inbred BALB C , Ovarian Follicle/cytology , Sexual Maturation
SELECTION OF CITATIONS
SEARCH DETAIL