Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
J Fungi (Basel) ; 10(8)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39194875

ABSTRACT

Late blight, caused by the oomycete Phytophthora infestans, is a devastating disease of potato worldwide. In Israel, potatoes are grown twice a year, in autumn and spring, with late blight causing extensive damage in both seasons. While tuber seeds for the autumn planting are produced locally, seed tubers for the spring planting are imported from Europe due to dormancy of local tubers. Here, we demonstrate that seed tubers imported from Europe for the spring season carry asymptomatic infection with EU genotypes of P. infestans, which alters the population structure of the pathogen each spring. The proportion of imported tubers carrying asymptomatic infections ranged between 1.2 and 3.75%, varying by year and cultivar. Asymptomatic tubers produced late blight-infected sprouts about one month after planting. The sporangia produced on these sprouts served as primary inoculum, causing intensive foliage attacks on neighboring plants. When sprout-infected plants were uprooted and the mother tuber was washed, sliced, and placed in moistened dishes at 18 °C, profuse sporulation of P. infestans developed on the slices' surfaces within 1-2 days. The dominant genotype of P. infestans in the autumn season in Israel is 23A1, but genotypes in the following spring season changed to include 13A2 or 36A2. Surprisingly, genotype 43A1, which might be resistant to CAA and OSBPI fungicides and appeared in Europe in 2022, emerged in Israel in spring 2024. The immigrating genotypes do not persist in the country, allowing 23A1 to regain predominance in the following autumn. Long-term monitoring data suggest that the population structure of P. infestans changes yearly but temporarily due to the import of new genotypes from Europe.

2.
J Agric Food Chem ; 72(31): 17649-17657, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39047266

ABSTRACT

Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.


Subject(s)
Fungicides, Industrial , Plant Diseases , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Structure-Activity Relationship , Indoles/chemistry , Indoles/pharmacology , Cucumis sativus/chemistry , Cucumis sativus/microbiology , Oomycetes/drug effects , Solanum tuberosum/chemistry , Molecular Structure , Molecular Docking Simulation , Drug Discovery , Hydrocarbons, Fluorinated , Pyrazoles
3.
J Fungi (Basel) ; 9(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37998852

ABSTRACT

Mancozeb (MZ) is a broadly used fungicide for the control of plant diseases, including late blight in potatoes caused by the oomycete Phytophthora infestans (Mont.) De Bary. MZ has been banned for agricultural use by the European Union as of January 2022 due to its hazards to humans and the environment. In a search for replacement fungicides, twenty-seven registered anti-oomycete fungicidal preparations were evaluated for their ability to mitigate the threat of this disease. Fourteen fungicides provided good control (≥75%) of late blight in potted potato and tomato plants in growth chambers. However, in Tunnel Experiment 1, only three fungicides provided effective control of P. infestans in potatoes: Cyazofamid (Ranman, a QiI inhibitor), Mandipropamid (Revus, a CAA inhibitor), and Oxathiapiprolin + Benthiavalicarb (Zorvek Endavia, an OSBP inhibitor + CAA inhibitor). In Tunnel Experiment 2, these three fungicides were applied at the recommended doses at 7-, 9-, and 21-day intervals, respectively, totaling 6, 4, and 2 sprays during the season. At 39 days post-inoculation (dpi), control efficacy increased in the following order: Zorvec Endavia > Ranman > Revus > Mancozeb. Two sprays of Zorvec Endavia were significantly more effective in controlling the blight than six sprays of Ranman or four sprays of Revus. We, therefore, recommend using these three fungicides as replacements for mancozeb for the control of late blight in potatoes. A spray program that alternates between these three fungicides may be effective in controlling the disease and also in avoiding the build-up of resistance in P. infestans to mandipropamid and oxathiapiprolin.

4.
J Agric Food Chem ; 71(24): 9519-9527, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37286337

ABSTRACT

Oomycetes, particularly those from the genus Phytophthora, are significant threats to global food security and natural ecosystems. Oxathiapiprolin (OXA) is an effective oomycete fungicide that targets an oxysterol binding protein (OSBP), while the binding mechanism of OXA is still unclear, which limits the pesticide design, induced by the low sequence identity of Phytophthora and template models. Herein, we generated the OSBP model of the well-reported Phytophthora capsici using AlphaFold 2 and studied the binding mechanism of OXA. Based on it, a series of OXA analogues were designed. Then, compound 2l, the most potent candidate, was successfully designed and synthesized, showing a control efficiency comparable to that of OXA. Moreover, field trial experiments showed that 2l exhibited nearly the same activity (72.4%) as OXA against cucumber downy mildew at 25 g/ha. The present work indicated that 2l could be used as a leading compound for the discovery of new OSBP fungicides.


Subject(s)
Fungicides, Industrial , Phytophthora , Ecosystem , Plant Diseases , Fungicides, Industrial/pharmacology
5.
Pest Manag Sci ; 79(4): 1593-1603, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36562252

ABSTRACT

BACKGROUND: Oxathiapiprolin, an oxysterol-binding protein inhibitor (OSBPI), shows unexceptionable inhibitory activity against plant pathogenic oomycetes. FRAC (Fungicide Resistance Action Committee) classifies it into the mode of action group F9 (lipid homeostasis and transfer/storage), but very little is known about the lipid metabolism of oomycete pathogens when subjected to oxathiapiprolin. RESULTS: In this study, seven lipid categories and 1435 lipid molecules were identified in Phytophthora sojae, among which glycerolipids, glycerophospholipids, and sphingolipids account for 30.10%, 50.59%, and 7.28%, respectively. These lipids were categorized into 31 subclasses, which varied to different extents when treated with oxathiapiprolin. A total of 11 lipid subclasses showed significant changes. Among them, 10 lipid subclasses, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylserine (PS), ceramide (Cer), triglyceride (TG), (o-acyl)-1-hydroxy fatty acid, diglycosylceramide, sphingoshine (So), and sitosterol ester, were significantly up-regulated, while digalactosyldiacylglycerol was the only lipid that was significantly down-regulated by a factor of almost three. These lipid molecules were further analyzed at the lipid species level. A total of 542 species were significantly altered when treated with oxathiapiprolin, including 212 glycerolipids [186 TG and 26 diglycerides (DG)], 167 glycerophospholipids (38 PC, 15 LPC, 19 LPE, seven PS, etc.), 156 sphingolipids (146 Cer, four So, etc.), and some other lipid molecules. Finally, from the orthogonal partial least-squares discrimination analysis model, variable importance for the projection score analysis showed that Cer, TG, and some glycerophospholipids contribute to the metabolic disorder when subjected to oxathiapiprolin. CONCLUSION: Glycerolipids, glycerophospholipids, and sphingolipids in P. sojae undergo significant changes with oxathiapiprolin treatment. These results provided valuable information for further understanding the function of the target protein and the mode of action of OSBPIs in oomycetes. © 2022 Society of Chemical Industry.


Subject(s)
Lipid Metabolism Disorders , Phytophthora , Humans , Lipid Metabolism , Lipidomics , Sphingolipids , Glycerophospholipids
6.
Pest Manag Sci ; 79(1): 381-390, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36168957

ABSTRACT

BACKGROUND: Oxathiapiprolin is a new isoxazoline fungicide developed by DuPont to control oomycete diseases. Although oxathiapiprolin has shown strong inhibitory activity against oomycete pathogens, little is known about its ability to control Phytophthora sojae. RESULTS: Oxathiapiprolin showed high inhibitory activity against Phytophthora sojae, with 50% effective concentration (EC50 ) values ranging from 1.15 × 10-4 to 4.43 × 10-3 µg mL-1 . Oxathiapiprolin inhibited various stages of Phytophthora sojae development, including mycelial growth, sporangium formation, oospore production, and zoospore release. Electron microscopy studies revealed that oxathiapiprolin caused severe morphological and ultrastructural damage to Phytophthora sojae. Oxathiapiprolin affected the cell membrane and wall of Phytophthora sojae, making it more sensitive to osmotic and cell wall stress. Oxathiapiprolin exhibited translocation activity; it was absorbed by soybean roots and then translocated to the leaves. It was effective at reducing soybean Phytophthora root rot under glasshouse and field conditions. Both fungicide seed treatment and foliar spray significantly reduced disease incidence and yield losses compared with untreated controls in the field. CONCLUSION: Oxathiapiprolin exhibits high inhibitory activity against Phytophthora sojae, and has multiple mechanisms of action including severe mycelial damage and modulation of osmotic and cell wall stress. These results indicate that oxathiapiprolin can be used at low concentrations for highly effective management of soybean Phytophthora root rot caused by Phytophthora sojae. © 2022 Society of Chemical Industry.


Subject(s)
Phytophthora , Glycine max
7.
J Agric Food Chem ; 70(44): 14140-14147, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36315898

ABSTRACT

The oxysterol-binding protein inhibitor oxathiapiprolin is a new fungicide for controlling oomycetes diseases. Besides, laboratory mutagenesis oxathiapiprolin-resistance among phytopathogenic oomycetes in the field remains unknown. Here, the sensitivity of 97 P. colocasiae isolates to oxathiapiprolin was examined that were collected between 2011 and 2016. We obtained a baseline sensitivity with a mean EC50 value of 5.2639 × 10-4 µg mL-1. We showed that 6/32 isolates collected in Fujian Province from 2019 to 2020 were resistant to oxathiapiprolin without a significant fitness penalty on sporulation, vegetative growth, and virulence of the field isolates. The oxathiapiprolin resistance field isolates contained the point mutation glycine to valine at 699 in PcoORP1. The point mutation G699V was verified to confer resistance of P. colocasiae to oxathiapiprolin using the CRISPR/Cas9 system. The mutation G699V decreased the binding affinity between oxathiapiprolin and PcoORP1. These results will improve our understanding of the mechanism of P. colocasiae resistance to oxathiapiprolin under field conditions.


Subject(s)
Fungicides, Industrial , Phytophthora , Point Mutation , Plant Diseases , Hydrocarbons, Fluorinated/pharmacology , Fungicides, Industrial/pharmacology
8.
J Agric Food Chem ; 70(38): 12180-12188, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121774

ABSTRACT

Oxathiapiprolin is a chiral fungicide, and it can affect the metabolism of the cholesterol compounds by inhibiting oxysterol binding protein (OSBP) to exert its fungicidal effect. The application of oxathiapiprolin in agriculture is widespread, and its residue in the environment is a threat to both human and animal health. The two oxathiapiprolin enantiomers differ in their fungicidal activity, biotoxicity, and degradation by environmental forces. However, their biotoxicity has not been reported in animals. The toxicokinetics of a pesticide should be a crucial component for the evaluation of its toxicity in vivo. In this study, we investigated the absorption, bioavailability, tissue distribution, and excretion of the two oxathiapiprolin enantiomers in rats to verify their toxicokinetic process in animals. An ultrahigh-performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QQQ/MS) method was established to quantify the two oxathiapiprolin enantiomers in vivo. The two oxathiapiprolin enantiomers were found to have approximately the same absorption rate and bioavailability, and both were excreted mainly in the feces. The half-life of R-(-)-oxathiapiprolin was nearly twice that of S-(+)-oxathiapiprolin. R-(-)-oxathiapiprolin also had greater distribution than S-(+)-oxathiapiprolin in the liver, lungs, heart, spleen, kidneys, stomach, large intestine, small intestine, brain, and pancreas, supporting the notion that R-(-)-oxathiapiprolin could better bind with OSBP. The stereoselectivity of S-(+)-oxathiapiprolin in these tissues may be responsible for it being readily metabolized in vivo. The molecular docking technique was subsequently used to verify the more superior binding between R-(-)-oxathiapiprolin and OSBP compared with the binding between S-(+)-oxathiapiprolin and OSBP. The findings of this study could provide more reliable data for determining the toxicokinetics of a single enantiomer of oxathiapiprolin in animals, thereby providing some theoretical basis for its subsequent toxicological study.


Subject(s)
Fungicides, Industrial , Pesticides , Animals , Chromatography, High Pressure Liquid/methods , Fungicides, Industrial/chemistry , Hydrocarbons, Fluorinated , Molecular Docking Simulation , Pesticides/analysis , Pyrazoles , Rats , Receptors, Steroid , Stereoisomerism , Toxicokinetics
9.
J Agric Food Chem ; 70(39): 12310-12319, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36134436

ABSTRACT

The uptake, translocation, and subcellular distribution of oxathiapiprolin and famoxadone in tomato plants were investigated using hydroponic experiments. Oxathiapiprolin and famoxadone mainly accumulated in the tomato roots with limited translocation capacity from the roots to the upper part. The root absorption and inhibitor results noted the dominance of the apoplastic and symplastic pathways in the oxathiapiprolin and famoxadone uptake by the tomato roots, respectively. Furthermore, the uptake process for the two fungicides followed passive and aquaporin-dependent transport. Insoluble cell components (cell organelles and walls) were the dominant storage compartments for oxathiapiprolin and famoxadone. In the protoplast, oxathiapiprolin in the soluble fraction had a higher proportion than that of famoxadone. Finally, the uptake and distribution of the two fungicides by the tomato plants was accurately predicted using a partition-limited model. Thus, this study provides an in-depth understanding of the transfer of oxathiapiprolin and famoxadone from the environment to tomato plants.


Subject(s)
Fungicides, Industrial , Solanum lycopersicum , Fungicides, Industrial/metabolism , Fungicides, Industrial/pharmacology , Hydrocarbons, Fluorinated , Solanum lycopersicum/metabolism , Plant Roots/metabolism , Pyrazoles , Strobilurins/pharmacology
10.
Toxics ; 10(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36136513

ABSTRACT

Pesticides can affect non-target microorganisms in the soil and are directly related to soil microecological health and environmental safety. Oxathiapiprolin is a piperidinyl thiazole isoxazoline fungicide that shows excellent control effect against oomycete fungal diseases, including late blight, downy mildew, root rot, stem rot, and blight. Though it can exist stably in the soil for a long time, its effects on soil microbial structure and diversity are not well investigated. In the present study, the effects of oxathiapiprolin on the abundance and diversity of soil fungal communities in typical farmland were studied. The results show that the abundance and diversity of soil fungi were increased by oxathiapiprolin treatment with differences not significant on the 30th day. Oxathiapiprolin was found to change the structure of soil fungal communities, among which Ascomycota and Mortierellomycota were the most affected. Undefined saprophytic fungi increased in the treatment groups, and the colonization of saprophytic fungi can act as a major contributor to the function of soil microbial communities. This study lays a solid foundation regarding environmental behavior with the use of oxathiapiprolin in soil and details its scientific and rational use.

11.
Front Chem ; 10: 987557, 2022.
Article in English | MEDLINE | ID: mdl-36105307

ABSTRACT

Oxathiapiprolin was developed with high antifungal activity and novel target protein and is used in the oomycetes control for crop protection. The structural modifications of oxathiapiprolin are summarized. The achievements and challenges in the structural modification of oxathiapiprolin are also discussed in this mini review. The outlook in this field is perspected according to our own opinion and understanding on the development of oxysterol binding protein inhibition fungicides.

12.
EFSA J ; 20(5): e07347, 2022 May.
Article in English | MEDLINE | ID: mdl-35664565

ABSTRACT

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant DuPont submitted a request to the competent national authority in Ireland to set an import tolerance for the active substance oxathiapiprolin in blueberries in support of an authorised use in the United States. The data submitted in support of the request were found to be sufficient to derive a maximum residue level (MRL) proposal for highbush blueberries by noting that lowbush blueberries (Vaccinium angustifolium) are excluded from the authorised use in the United States. Adequate analytical methods for enforcement are available to control the residues of oxathiapiprolin in plant matrices at the validated limit of quantification (LOQ) of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the long-term intake of residues resulting from the use of oxathiapiprolin according to the reported agricultural practice is unlikely to present a risk to consumer health.

13.
Sci Total Environ ; 836: 155632, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35523333

ABSTRACT

Oxathiapiprolin is an efficient and chiral fungicide for peronosporomycetes. The enantioselective environmental behavior and ecotoxicity of oxathiapiprolin are still unclear. The enantioselectivity of oxathiapiprolin enantiomers was explored, including their acute toxicity toward aquatic plants (Auxenochlorella pyrenoidosa and Soirodela polyrhiza) along with their influence on photosynthetic pigment production, the acute toxicity and morphological differences for the embryos, larvae and adult stages of zebrafish (Danio rerio), and the degradation in four typical soils (aerobic, anaerobic and sterilized conditions). The enantioselective toxicity of oxathiapiprolin showed that the toxicity of R-oxathiapiprolin was 1.8-2.1 times higher than that of S-oxathiapiprolin toward the two aquatic plants. In particular, the content of photosynthetic pigments decreased significantly stronger after exposure to R-oxathiapiprolin compared with S-oxathiapiprolin. The LC50 values of R-oxathiapiprolin in zebrafish in the different life stages were 1.6-2.1 times higher than those of S-oxathiapiprolin. The zebrafish embryos were most sensitive to the oxathiapiprolin enantiomers. After exposure to R-oxathiapiprolin, zebrafish embryos showed noticeable hatching delays, inhibition or deformation. R-oxathiapiprolin degraded preferentially in all four soils, with an enantiomeric fraction (EF) ranging from 0.28 to 0.42 under aerobic conditions. Enantioselective degradation was not found under anaerobic and sterilized conditions. The enantioselectivity of new chiral pesticides should be fully considered in risk assessments to provide a basis for the development and preparation of pure optical enantiomers.


Subject(s)
Fungicides, Industrial , Animals , Fungicides, Industrial/analysis , Fungicides, Industrial/toxicity , Hydrocarbons, Fluorinated , Pyrazoles , Soil , Stereoisomerism , Zebrafish
14.
EFSA J ; 20(1): e07049, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35079286

ABSTRACT

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant DLR-Rheinpfalz submitted a request to the competent national authority in Germany to modify the existing maximum residue level (MRL) for the active substance oxathiapiprolin in kales, with the specific intention to derive an MRL in radish leaves (classified under the subgroup of kales), based on an intended NEU use on radishes. The residue data in radish leaves submitted in support of the request were found to be sufficient to derive MRL proposal for this commodity which could be applicable also for kales. Adequate analytical methods for enforcement are available to control the residues of oxathiapiprolin in radishes at the validated LOQ of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the long-term intake of residues resulting from the use of oxathiapiprolin on radishes according to the reported agricultural practice is unlikely to present a risk to consumer health.

15.
Plant Dis ; 106(4): 1271-1277, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34854759

ABSTRACT

Phytophthora nicotianae is the most common pathogen in nurseries and gardens, infecting both woody and herbaceous ornamental plants. Phytophthora aerial blight symptoms such dull water-soaked lesions on shoot tips and leaf petioles, girdling on the main stem, necrosis, and wilting of annual vinca were observed in a commercial greenhouse in Warren County, TN, U.S.A., in May 2016. The objective of this study was to identify the causal agent of Phytophthora aerial blight and develop a fungicide management recommendation for ornamental producers. Attempts to isolate the pathogen from symptomatic leaf tissue were conducted, and excised leaf pieces were embedded in V8 agar medium. Morphological characterization, PCR, sequencing, and pathogenicity test of the isolate FBG2016_444 were conducted to confirm the pathogen identification. The sequence identity was 100% identical to P. nicotianae, and a combined phylogenetic tree (internal transcribed spacer, large subunit of rDNA, and ras-related protein gene) grouped isolate FBG2016_444 within the clade of P. nicotianae. In the pathogenicity study, all inoculated annual vinca plant showed Phytophthora aerial blight symptoms, and P. nicotianae was reisolated, whereas noninoculated annual vinca plant remained symptomless. These findings confirmed P. nicotianae as the causal agent of Phytophthora aerial blight of annual vinca. In addition, two rates (0.078 and 0.156 ml·liter-1) and three application intervals (7, 14, and 21 days before inoculation [DBI]) of oxathiapiprolin (Segovis) were evaluated for their ability to reduce the Phytophthora aerial blight severity on annual vinca plants. The control groups were positive (nontreated inoculated) and negative (nontreated noninoculated) plants. Both rates and application timings of oxathiapiprolin significantly reduced Phytophthora aerial blight severity and disease progress (area under disease progress curve [AUDPC]) on annual vinca plants compared with the positive control. However, 0.078 and 0.156 ml·liter-1 of oxathiapiprolin applied at 7 or 14 DBI were the most effective treatments in reducing the disease severity and AUDPC on annual vinca plants. The plant growth parameters such as increase in height and width, total plant weight, and root weight were not influenced by the application of oxathiapiprolin. The findings reported in this study will help ornamental producers with better management of Phytophthora aerial blight of annual vinca.


Subject(s)
Catharanthus , Fungicides, Industrial , Phytophthora , Fungicides, Industrial/pharmacology , Phylogeny , Plants
16.
Pest Manag Sci ; 78(3): 905-913, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34716648

ABSTRACT

BACKGROUND: Oxathiapiprolin is a piperidinyl thiazole isoxazoline fungicide discovered by DuPont and commercialized by Corteva Agriscience. It acts by inhibiting a novel fungal target, an oxysterol binding protein (OSBP), and is intrinsically highly active against oomycetes including grape downy mildew (Plasmopara viticola) and potato late blight (Phytophthora infestans). Because the fungicide acts at a single site there is a need to determine the risk of resistance development. RESULTS: Oxathiapiprolin controlled European Plasmopara viticola and Phytophthora infestans isolates at very low concentrations with half maximal effective concentration (EC50 ) values ranging from 0.001 to 0.0264 mg L-1 and 0.001 to 0.03 mg L-1 , respectively. Laboratory mutagenesis studies performed with Phytophthora capsici using ultraviolet (UV) irradiation generated mutants with reduced sensitivity to oxathiapiprolin. All resistant mutants had a base pair change in the OSBP gene that resulted in an amino acid change. Most common substitutions were S768Y, G770V, G839W and L863W. Isolates of Plasmopara viticola and Phytophthora infestans with reduced sensitivity were also detected in field trial sites where oxathiapiprolin had been applied repeatedly each season over several consecutive years. CONCLUSIONS: The risk of oxathiapiprolin resistance development in Plasmopara viticola and Phytophthora infestans is medium to high and strict resistance management measures are required. Over-exposure of target populations to single-site fungicides during product development should be avoided.


Subject(s)
Fungicides, Industrial , Oomycetes , Phytophthora infestans , Fungicides, Industrial/pharmacology , Hydrocarbons, Fluorinated , Oomycetes/genetics , Phytophthora infestans/genetics , Plant Diseases , Pyrazoles
17.
J Agric Food Chem ; 69(11): 3289-3297, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33710880

ABSTRACT

Oxathiapiprolin is a novel chiral piperidine thiazole isooxazoline fungicide that contains a pair of enantiomers. An effective analytical method was established for the enantioselective detection of oxathiapiprolin in fruit, vegetable, and soil samples using ultraperformance liquid chromatography-tandem triple quadrupole mass spectrometry. The optimal enantioseparation was achieved on a Chiralpak IG column at 35 °C using acetonitrile and 0.1% formic acid aqueous solution (90:10, v/v) as the mobile phase. The absolute configuration of the oxathiapiprolin enantiomers was identified with the elution order of R-(-)-oxathiapiprolin and S-(+)-oxathiapiprolin by electron circular dichroism spectra. The bioactivity of R-(-)-oxathiapiprolin was 2.49 to 13.30-fold higher than that of S-(+)-oxathiapiprolin against six kinds of oomycetes. The molecular docking result illuminated the mechanism of enantioselectivity in bioactivity. The glide score (-8.00 kcal/mol) for the R-enantiomer was better with the binding site in Phytophthora capsici than the S-enantiomer (-7.50 kcal/mol). Enantioselective degradation in tomato and pepper under the field condition was investigated and indicated that R-(-)-oxathiapiprolin was preferentially degraded. The present study determines the enantioselectivity of oxathiapiprolin about enantioselective detection, bioactivity, and degradation for the first time. The R-enantiomer will be a better choice than racemic oxathiapiprolin to enhance the bioactivity and reduce the pesticide residues at a lower application rate.


Subject(s)
Fungicides, Industrial , Soil Pollutants , Chromatography, High Pressure Liquid , Fungicides, Industrial/analysis , Hydrocarbons, Fluorinated , Molecular Docking Simulation , Pyrazoles , Soil Pollutants/analysis , Stereoisomerism , Tandem Mass Spectrometry
18.
FEMS Microbes ; 2: xtab016, 2021.
Article in English | MEDLINE | ID: mdl-37334227

ABSTRACT

Phytophthora species cause disease and devastation of plants in ecological and horticultural settings worldwide. A recently identified species, Phytophthoraagathidicida, infects and ultimately kills the treasured kauri trees (Agathis australis) that are endemic to New Zealand. Currently, there are few options for managing kauri dieback disease. In this study, we sought to assess the efficacy of the oomycide oxathiapiprolin against several life cycle stages of two geographically distinct P. agathidicida isolates. The effective concentration to inhibit 50% of mycelial growth (EC50) was determined to be ∼0.1 ng/ml, indicating that P. agathidicida mycelia are more sensitive to oxathiapiprolin than those from most other Phytophthora species that have been studied. Oxathiapiprolin was also highly effective at inhibiting the germination of zoospores (EC50 = 2-9 ng/ml for the two isolates) and oospores (complete inhibition at 100 ng/ml). In addition, oxathiapiprolin delayed the onset of detached kauri leaf infection in a dose-dependent manner. Collectively, the results presented here highlight the significant potential of oxathiapiprolin as a tool to aid in the control of kauri dieback disease.

19.
Plant Dis ; 104(11): 2832-2842, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32946348

ABSTRACT

Species of Pythium cause root and stem rot in cucurbits, but no formal surveys have been conducted in the United States to identify which species are responsible. The cucurbit hosts bottle gourd, cucumber, Hubbard squash, and watermelon were transplanted in May, July, September, and November into sentinel plots in four and five different fields in 2017 and 2018, respectively, in South Carolina. Eight of the nine fields were replanted in March 2019. Isolates (600) were collected and identified by sequencing DNA of the mitochondrial cytochrome oxidase I region. The four most common species were P. spinosum (45.6% of all isolates), P. myriotylum (20.0%), P. irregulare (15.3%), and P. aphanidermatum (12.8%). P. myriotylum and P. aphanidermatum were predominantly isolated in May, July, and September, whereas P. spinosum and P. irregulare were predominantly isolated in November and March. Isolates of P. ultimum, P. irregulare, and P. spinosum were more virulent than isolates of P. myriotylum and P. aphanidermatum at 25°C. Representative isolates were screened in vitro for sensitivity to three fungicides: mefenoxam, propamocarb, and oxathiapiprolin. All isolates were sensitive to mefenoxam and propamocarb, but these same isolates were insensitive to oxathiapiprolin, except those classified taxonomically in Pythium clade I.


Subject(s)
Cucumis sativus , Fungicides, Industrial , Pythium , Plant Diseases , Pythium/genetics , South Carolina
20.
EFSA J ; 18(6): e06155, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32874331

ABSTRACT

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Du Pont (UK) submitted a request to the competent national authority in the United Kingdom to set an import tolerance for the active substance oxathiapiprolin in various crops in support of authorised uses in the United States. The data submitted in support of the request were found to be sufficient to derive maximum residue level (MRL) proposals for citrus fruits, blackberries, raspberries, Chinese cabbage, basil and edible flowers and asparagus. For dewberries, potatoes and sweet potatoes, data gaps were identified which precluded the derivation of MRL proposals. Adequate analytical methods for enforcement are available to control the residues of oxathiapiprolin in plant matrices at the validated limit of quantification (LOQ) of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the long-term intake of residues resulting from the use of oxathiapiprolin according to the reported agricultural practices is unlikely to present a risk to consumer health.

SELECTION OF CITATIONS
SEARCH DETAIL