Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 47(8): 2879-2894, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38616485

ABSTRACT

Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system's adaptions to low-oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, as erfVII seedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII-driven counteraction of hypoxia-induced inhibition of LR formation in an ABA-dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA-degrading ABA 8'-hydroxylases CYP707A1 expression. RAP2.12 could activate the pCYC707A1:LUC reporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia-induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII-dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Homeostasis , Plant Roots , Transcription Factors , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Abscisic Acid/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Oxygen/metabolism
2.
J Exp Biol ; 227(4)2024 02 15.
Article in English | MEDLINE | ID: mdl-38380449

ABSTRACT

Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.


Subject(s)
Salmonidae , Animals , Ecosystem , Oxygen , Gills , Temperature , Trout , Water , Body Size
3.
Ecol Lett ; 27(2): e14389, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38382913

ABSTRACT

Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics.


Subject(s)
Fishes , Vertebrates , Animals , Temperature , Body Size , Oxygen/physiology
4.
Proc Biol Sci ; 290(2010): 20231779, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37909085

ABSTRACT

Fish tend to grow faster as the climate warms but attain a smaller adult body size following an earlier age at sexual maturation. Despite the apparent ubiquity of this phenomenon, termed the temperature-size rule (TSR), heated scientific debates have revealed a poor understanding of the underlying mechanisms. At the centre of these debates are prominent but marginally tested hypotheses which implicate some form of 'oxygen limitation' as the proximate cause. Here, we test the role of oxygen limitation in the TSR by rearing juvenile Galaxias maculatus for a full year in current-day (15°C) and forecasted (20°C) summer temperatures while providing half of each temperature group with supplemental oxygen (hyperoxia). True to the TSR, fish in the warm treatments grew faster and reached sexual maturation earlier than their cooler conspecifics. Yet, despite supplemental oxygen significantly increasing maximum oxygen uptake rate, our findings contradict leading hypotheses by showing that the average size at sexual maturation and the adult body size did not differ between normoxia and hyperoxia groups. We did, however, discover that hyperoxia extended the reproductive window, independent of fish size and temperature. We conclude that the intense resource investment in reproduction could expose a bottleneck where oxygen becomes a limiting factor.


Subject(s)
Hyperoxia , Animals , Oxygen , Oxygen Consumption , Fishes , Temperature , Reproduction
5.
Chemosphere ; 338: 139468, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37442385

ABSTRACT

The present study describes the microbial production of polyhydroxyalkanoates (PHA) from thermally pre-treated sewage sludge at pilot scale level, investigating for the first time the effect of the organic loading rate (OLR) under oxygen limitation on biomass storage properties and kinetics. Polymer characteristics have been also evaluated. The selection/enrichment of PHA-storing biomass was successfully achieved in a Sequencing Batch Reactor (SBR) under short hydraulic retention time (HRT; 2 days). Low OLR (2.05 g COD/L d) was ideal for the selection of an efficient PHA-producing consortium cultivated under limited oxygen availability. In the fed-batch accumulation conducted under high DO regime, such biomass was characterized by 51% of PHA content on cell dry weight, with a related storage yield (YP/Sbatch) of 0.61 CODPHA/CODS. On the contrary, medium OLR (4.56 g COD/L d) was not technically feasible to sustain the required consortium's selection under low DO regime. The PHA produced by biomass cultivated under low DO regime was characterized higher thermal stability and crystalline domain compared to PHA traditionally produced under high DO regime. The mass balance assessment highlighted a global yield of 51 g PHA/kg VS (volatile solids of thickened sludge), which was 9% lower than yield obtained under high DO regime, in the face of a realistic reduction of the energy cost of the process.


Subject(s)
Polyhydroxyalkanoates , Sewage , Fermentation , Bioreactors , Oxygen , Anaerobiosis , Biomass
6.
J Exp Biol ; 226(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37493039

ABSTRACT

The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships.


Subject(s)
Basal Metabolism , Sharks , Animals , Sharks/metabolism , Oxygen/metabolism , California
7.
Glob Chang Biol ; 29(17): 5033-5043, 2023 09.
Article in English | MEDLINE | ID: mdl-37401451

ABSTRACT

Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.


Subject(s)
Amphipoda , Aquatic Organisms , Climate Change , Global Warming , Heat-Shock Response , Amphipoda/physiology , Temperature , Acclimatization , Aquatic Organisms/physiology , Rivers , Netherlands , Environmental Monitoring
8.
J Exp Biol ; 226(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37334714

ABSTRACT

The lifetime growth of almost all fishes follows a biphasic relationship - juvenile growth is rapid and adult growth subsequently decelerates. For a trend that is so ubiquitous, there is no general agreement as to the underlying mechanisms causing adult growth to decelerate. Ongoing theories argue that adult growth slows because either the gills fail to supply the body with surplus oxygen needed for continued somatic gain (i.e. oxygen limited), or sexual maturation induces a switch in energy allocation towards reproduction and away from growth (i.e. energy limited). Here, we empirically tested these notions by tracking the individual growth trajectories of ∼100 female Galaxias maculatus, ranging in size, during their first 3 months of adulthood. At a summer temperature of 20°C, we provided subsets of fish with additional energy (fed once versus twice a day), supplementary oxygen (normoxia versus hyperoxia), or a combination of the two, to assess whether we could change the trajectory of adult growth. We found that growth improved marginally with additional energy, yet remained unaffected by supplementary oxygen, thereby providing evidence for a role for energy reallocation in the deceleration of adult growth. Interestingly, additional dietary energy had a disproportionately larger effect on the growth of fish that matured at a greater size, revealing size-dependent variance in energy acquisition and/or allocation budgets at summer temperatures. Overall, these findings contribute towards understanding the mechanisms driving widespread declines in the body size of fish with climate warming.


Subject(s)
Deceleration , Oxygen , Female , Animals , Fishes , Reproduction , Body Size , Temperature
9.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37253601

ABSTRACT

Rhizobium sp. IRBG74 is a nitrogen-fixing symbiont of Sesbania cannabina and a growth-promoting endophyte of rice, thus making it a good model to compare rhizobial interactions with legumes and cereals. In this report, we show that Rhizobium sp. IRBG74 forms biofilms on the roots of S. cannabina and rice. A mutant defective in biofilm formation was identified by screening a transposon mutant library. The transposon insertion was in thiQ, part of the thiBPQ operon that encodes the components of a thiamine/thiamine pyrophosphate ABC transporter. Complementation with thiBPQ partially restored biofilm formation. Addition of thiamine in growth media led to repression of thiC expression in the wild-type strain but not in the thiQ mutant. These results suggest that thiBPQ is involved in thiamine/TPP transport in Rhizobium sp. IRBG74. Using a GUS reporter, we show that the expression of thiC is significantly higher in biofilm as compared to cells in planktonic growth. Based on these results, we propose that Rhizobium sp. IRBG74 is thiamine-limited and requires thiamine transport for efficient biofilm formation and plant colonization. Thiamine synthesis in aerobic bacteria such as Rhizobium requires O2 and thus could be inhibited in the microaerobic/anaerobic conditions in biofilms.


Subject(s)
Rhizobium , Thiamine , Thiamine/metabolism , Rhizobium/genetics , Plant Roots/microbiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Biofilms
10.
J Comp Physiol B ; 193(4): 425-438, 2023 08.
Article in English | MEDLINE | ID: mdl-37149515

ABSTRACT

The gill oxygen limitation hypothesis (GOLH) suggests that hypometric scaling of metabolic rate in fishes is a consequence of oxygen supply constraints imposed by the mismatched growth rates of gill surface area (a two-dimensional surface) and body mass (a three-dimensional volume). GOLH may, therefore, explain the size-dependent spatial distribution of fish in temperature- and oxygen-variable environments through size-dependent respiratory capacity, but this question is unstudied. We tested GOLH in the tidepool sculpin, Oligocottus maculosus, a species in which body mass decreases with increasing temperature- and oxygen-variability in the intertidal, a pattern consistent with GOLH. We statistically evaluated support for GOLH versus distributed control of [Formula: see text] allometry by comparing scaling coefficients for gill surface area, standard and maximum [Formula: see text] ([Formula: see text],Standard and [Formula: see text],Max, respectively), ventricle mass, hematocrit, and metabolic enzyme activities in white muscle. To empirically evaluate whether there is a proximate constraint on oxygen supply capacity with increasing body mass, we measured [Formula: see text],Max across a range of Po2s from normoxia to Pcrit, calculated the regulation value (R), a measure of oxyregulatory capacity, and analyzed the R-body mass relationship. In contrast with GOLH, gill surface area scaling either matched or was more than sufficient to meet [Formula: see text] demands with increasing body mass and R did not change with body mass. Ventricle mass (b = 1.22) scaled similarly to [Formula: see text],Max (b = 1.18) suggesting a possible role for the heart in the scaling of [Formula: see text],Max. Together our results do not support GOLH as a mechanism structuring the distribution of O. maculosus and suggest distributed control of oxyregulatory capacity.


Subject(s)
Gills , Oxygen , Animals , Oxygen Consumption , Fishes/physiology , Temperature
11.
Biotechnol Bioeng ; 120(6): 1569-1583, 2023 06.
Article in English | MEDLINE | ID: mdl-36891886

ABSTRACT

Oxygen-balanced mixotrophy (OBM) is a novel type of microalgal cultivation that improves autotrophic productivity while reducing aeration costs and achieving high biomass yields on substrate. The scale-up of this process is not straightforward, as nonideal mixing in large photobioreactors might have unwanted effects in cell physiology. We simulated at lab scale dissolved oxygen and glucose fluctuations in a tubular photobioreactor operated under OBM where glucose is injected at the beginning of the tubular section. We ran repeated batch experiments with the strain Galdieria sulphuraria ACUF 064 under glucose pulse feeding of different lengths, representing different retention times: 112, 71, and 21 min. During the long and medium tube retention time simulations, dissolved oxygen was depleted 15-25 min after every glucose pulse. These periods of oxygen limitation resulted in the accumulation of coproporphyrin III in the supernatant, an indication of disruption in the chlorophyll synthesis pathway. Accordingly, the absorption cross-section of the cultures decreased steeply, going from values of 150-180 m2 kg-1 at the end of the first batch down to 50-70 m2 kg-1 in the last batches of both conditions. In the short tube retention time simulation, dissolved oxygen always stayed above 10% air saturation and no pigment reduction nor coproporphyrin III accumulation were observed. Concerning glucose utilization efficiency, glucose pulse feeding caused a reduction of biomass yield on substrate in the range of 4%-22% compared to the maximum levels previously obtained with continuous glucose feeding (0.9 C-g C-g-1 ). The missing carbon was excreted to the supernatant as extracellular polymeric substances constituted by carbohydrates and proteins. Overall, the results point out the importance of studying large-scale conditions in a controlled environment and the need for a highly controlled glucose feeding strategy in the scale-up of mixotrophic cultivation.


Subject(s)
Glucose , Photobioreactors , Oxygen/metabolism , Photosynthesis , Chlorophyll , Biomass
12.
Microb Cell Fact ; 22(1): 41, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849884

ABSTRACT

BACKGROUND: Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS: Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS: The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.


Subject(s)
Bacteriocins , Corynebacterium glutamicum , Pediocins , Antimicrobial Peptides , Calcium , Corynebacterium glutamicum/genetics , Isopropyl Thiogalactoside , Bacteriocins/genetics , Ions , Hydrogen-Ion Concentration
13.
Eng Life Sci ; 23(1): e2100139, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36619886

ABSTRACT

In large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a high producing industrial strain of Penicillium chrysogenum was investigated. Within a wide range of DO concentrations, obtained under chemostat conditions, we observed different responses from P. chrysogenum: (i) no influence on growth or penicillin production (>0.025 mmol L-1); (ii) reduced penicillin production, but no growth limitation (0.013-0.025 mmol L-1); and (iii) growth and penicillin production limitations (<0.013 mmol L-1). In addition, scale down experiments were performed by oscillating the DO concentration in the bioreactor. We found that during DO oscillation, the penicillin production rate decreased below the value observed when a constant DO equal to the average oscillating DO value was used. To understand and predict the influence of oxygen levels on primary metabolism and penicillin production, we developed a black box model that was linked to a detailed kinetic model of the penicillin pathway. The model simulations represented the experimental data during the step experiments; however, during the oscillation experiments the predictions deviated, indicating the involvement of the central metabolism in penicillin production.

14.
J Fish Biol ; 101(6): 1595-1600, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36069991

ABSTRACT

Experimental hyperoxia has been shown to enhance the maximum oxygen uptake capacity of fishes under acute conditions, potentially offering an avenue to test prominent physiological hypotheses attempting to explain impacts of climate warming on fish populations (e.g., gill-oxygen limitation driving declines in fish size). Such benefits of experimental hyperoxia must persist under chronic conditions if it is to provide a valid manipulation to test the relevant hypotheses, yet the long-term benefits of experimental hyperoxia to oxygen uptake capacity have not been examined. Here, the authors measured aerobic metabolic performance of Galaxias maculatus upon acute exposure to hyperoxia (150% air saturation) and after 5 months of acclimation, at both 15°C and 20°C. Acute hyperoxia elevated aerobic scope by 74%-94% relative to normoxic controls, and an elevation of 58%-73% persisted after 5 months of hyperoxia acclimation. When hyperoxia-acclimated fish were acutely transitioned back to normoxia, they maintained superior aerobic performance compared with normoxic controls, suggesting an acclimation of the underlying metabolic structures/processes. In demonstrating the long-term benefits of experimental hyperoxia on the aerobic performance of a fish, the authors encourage the use of such approaches to disentangle the role of oxygen in driving the responses of fish populations to climate warming.


Subject(s)
Oxygen Consumption , Oxygen , Animals , Oxygen/metabolism , Oxygen Consumption/physiology , Acclimatization/physiology , Fishes/physiology , Gills/metabolism
15.
Environ Sci Technol ; 56(13): 9806-9815, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35723552

ABSTRACT

Birnessite (δ-MnO2) is a layered manganese oxide widely present in the environment and actively participates in the transformation of natural organic matter (NOM) in biogeochemical processes. However, the effect of oxygen on the dynamic interface processes of NOM and δ-MnO2 remains unclear. This study systematically investigated the interactions between δ-MnO2 and fulvic acid (FA) under both aerobic and anaerobic conditions. FA was transformed by δ-MnO2 via direct electron transfer and the generated reactive oxygen species (ROS). During the 32-day reaction, 79.8% of total organic carbon (TOC) in solution was removed under anaerobic conditions, unexpectedly higher than that under aerobic conditions (69.8%), suggesting that oxygen limitation was more conducive to the oxidative transformation of FA by δ-MnO2. The oxygen vacancies (OV) on the surface of δ-MnO2 were more exposed under anaerobic conditions, thus promoting the adsorption and transformation of FA as well as regeneration of the active sites. Additionally, the reaction of FA with δ-MnO2 weakened the strongly bonded lattice oxygen (Olatt), and the released Olatt was an important source of ROS. Interestingly, a part of organic carbon (OC) was preserved by forming MnCO3, which might be a novel mechanism for carbon preservation. These findings contribute to an improved understanding of the dynamic interface processes between MnO2 and NOM and provide new insights into the effects of oxygen limitation on the cycling and preservation of OC.


Subject(s)
Manganese Compounds , Oxides , Carbon , Catalytic Domain , Manganese Compounds/chemistry , Oxides/chemistry , Oxygen/chemistry , Reactive Oxygen Species
16.
J Fish Biol ; 101(4): 874-884, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35762307

ABSTRACT

To bridge physiological and evolutionary perspectives on size at maturity in fishes, the authors focus on the approximately invariant ratio between the estimated oxygen supply at size at maturity (Qm ) relative to that at asymptotic size (Q∞ ) among species within a taxonomic group, and show how two important theories related to this phenomenon complement each other. Gill-oxygen limitation theory proposes a mechanistic basis for a universal oxygen supply-based threshold for maturation, which applies among and within species. On the contrary, the authors show that a generalisation of life-history theory for the invariance of size at maturity (Lm ) relative to asymptotic size (L∞ ) can provide an evolutionary rationale for an oxygen-limited maturation threshold (Qm /Q∞ ). Extending previous inter- and intraspecific analyses, the authors show that maturation invariances also occur in lake whitefish Coregonus clupeaformis (Mitchill 1818), but at both scales, theory seems to underestimate the value of the maturation threshold. They highlight some key uncertainties in the model that should be addressed to help resolve the mismatch.


Subject(s)
Life History Traits , Salmonidae , Animals , Fishes , Salmonidae/physiology , Biological Evolution , Oxygen
17.
Appl Biochem Biotechnol ; 194(5): 2284-2300, 2022 May.
Article in English | MEDLINE | ID: mdl-35099723

ABSTRACT

In the present study, the effect of employing the increasing- aeration strategy (IAS) in the oxygen-limited situation and proportionate to increasing oxygen demand of the fungus Schizophyllum commune (S. commune) has been investigated in both stirred tank (STB) and bubble column (BCB) bioreactors. The purpose was to enhance schizophyllan (SPG) production by preventing oxygen starvation, improve mixing conditions of pseudoplastic culture, and intensify shear stress on fungus pellets to release SPG. At first, a constant-aeration rate of 0.08 vvm was implemented in both bioreactors to evaluate the new strategy compared to the previously studied methods. In the second set of experiments with IAS, along with the increasing oxygen demand of culture, the inlet airflow was increased gradually, while the dissolved oxygen (DO) was maintained higher than zero and below 1%. Using IAS in STB significantly raised productivity by about 100% in 96 h from 0.035 to 0.073 g/L.h. Also, employing this strategy in BCB led to a 30% increase in the maximum SPG production from 3.2 to 4.2 g/L. IAS can effectively help handle the operation of S. commune cultivation on a large scale by improving mixing conditions, mass transfer, and shear stress in both bioreactor types. This method had a significant impact on STB cultivation and its productivity so that it can be a practical approach to SPG's industrial production.


Subject(s)
Schizophyllum , Sizofiran , Bioreactors/microbiology , Oxygen
18.
J Fish Biol ; 101(2): 400-407, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34874555

ABSTRACT

The prevailing determinant of maturation in fishes is thought to be a redirection of energy from growth to reproduction. Instead, the Gill Oxygen Limitation Theory predicts that maturation, and thus reproduction, is induced when a fish reaches a critical ratio of oxygen supply to demand (Qm /Qmaint ). The consistency of this critical ratio has been previously documented in many fishes, but a broader test was lacking. In this study, the authors assess if this critical ratio is consistent across 132 unique fish species, as measured by the slope of the relationship between Lmax D and Lm D , where Lmax is the maximum length reached in a given population, Lm is the mean size at first maturity in that population and D is a gill-related exponent which renders the Lmax D /Lm D ratio equivalent to the Qm /Qmaint ratio. The authors found that across all species, the Lmax D /Lm D ratio was 1.40 (95% c.i. 1.38-1.42), which was not significantly different from that previously estimated across other species groups (1.35, 95% c.i. 1.22-1.53), especially when phylogenetic relationships were considered (1.25, 95% Bayesian credible interval 1.09-1.40). The consistency of the Lmax D /Lm D ratio across taxa, which expresses the difference in metabolic rate at maturity and maximum size, suggests that the scaling of gill surface area is the factor that underlies this ratio, and which triggers the maturation in fishes.


Subject(s)
Fishes , Gills , Animals , Bayes Theorem , Fresh Water , Gills/metabolism , Oxygen/metabolism , Phylogeny
19.
Biology (Basel) ; 10(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34571738

ABSTRACT

Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.

20.
Biotechnol Bioeng ; 118(12): 4735-4750, 2021 12.
Article in English | MEDLINE | ID: mdl-34506651

ABSTRACT

The obligate aerobic nature of Pseudomonas putida, one of the most prominent whole-cell biocatalysts emerging for industrial bioprocesses, questions its ability to be cultivated in large-scale bioreactors, which exhibit zones of low dissolved oxygen tension. P. putida KT2440 was repeatedly subjected to temporary oxygen limitations in scale-down approaches to assess the effect on growth and an exemplary production of rhamnolipids. At those conditions, the growth and production of P. putida KT2440 were decelerated compared to well-aerated reference cultivations, but remarkably, final biomass and rhamnolipid titers were similar. The robust growth behavior was confirmed across different cultivation systems, media compositions, and laboratories, even when P. putida KT2440 was repeatedly exposed to dual carbon and oxygen starvation. Quantification of the nucleotides ATP, ADP, and AMP revealed a decrease of intracellular ATP concentrations with increasing duration of oxygen starvation, which can, however, be restored when re-supplied with oxygen. Only small changes in the proteome were detected when cells encountered oscillations in dissolved oxygen tensions. Concluding, P. putida KT2440 appears to be able to cope with repeated oxygen limitations as they occur in large-scale bioreactors, affirming its outstanding suitability as a whole-cell biocatalyst for industrial-scale bioprocesses.


Subject(s)
Bioreactors/microbiology , Oxygen/metabolism , Pseudomonas putida , Biomass , Carbon/metabolism , Glycolipids/metabolism , Metabolic Engineering , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL