Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.062
Filter
1.
ChemSusChem ; : e202400956, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103317

ABSTRACT

Recovery of spent Pt/C catalyst is a sustainable low-cost route to promote large-scale application of hydrogen fuel cells. Here, we report a thermal migration strategy to recover the spent Pt/C. In this route, the ZIF-8 is used to produce nitrogen doped porous carbon (NC) with abundant pyrimidine nitrogen sites as the new support. Subsequently, the spent Pt/C, NC, and NH4Cl etching reagent are mixed and heated at 900 oC to thermally migrate Pt from Pt/C onto NC with the help of NH4Cl etching reagent. The thermal-volatilized Pt tends to be captured by the pyrimidine nitrogen sites of NC support, thus producing the Pt clusters or 4 - 5 nm Pt particles. The recovered Pt/NC catalyst exhibits the highly stable oxygen reduction activities with a mass activity of 0.6 A mgPt-1 after 30000-cycle accelerated durability test.

2.
Chemosphere ; 364: 143022, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103102

ABSTRACT

In the Electro-Fenton (EF) process, hydrogen peroxide (H2O2) is produced in situ by a two-electron oxygen reduction reaction (2e ORR), which is further activated by electrocatalysts to generate reactive oxygen specieces (ROS). However, the selectivity of 2e transfer from catalysts to O2 is still unsatisfactory, resulting in the insufficient H2O2 availability. Carbon based materials with abundant oxygen-containing functional groups have been used as excellent 2e ORR electrocatalysts, and atomic hydrogen (H*) can quickly transfer one electron to H2O2 in a wide pH range and avoiding the restrict of traditional Fenton reaction. Herein, nickel nanoparticles growth on oxidized carbon deposited on modified carbon felt (Ni/Co@CFAO) was prepared as a bifunctional catalytic electrode coupling 2e ORR to form H2O2 with H* reducing H2O2 to produce ROS for highly efficient degradation of antibiotics. Electrochemical oxidation and thermal treatment were used to modulate the structure of carbon substrates for increasing the electro-generation of H2O2, while H* was produced over Ni sites through H2O/H+ reduction constructing an in-situ EF system. The experimental results indicated that 2e ORR and H* induced EF processes could promote each other mutually. The optimized Ni/Co@CFAO with a Ni:C mass ratio of 1:9 exhibited a high 2e selectivity and H2O2 yield of 49 mg L-1. As a result, the designed Ni/Co@CFAO exhibited excellent electrocatalytic ability to degrade tetracycline (TC) under different aqueous environmental conditions, and achieved 98.5% TC removal efficiency within 60 min H2O2 and H* were generated simultaneously at the bifunctional cathode and react to form strong oxidizing free radicals •OH. At the same time, O2 gained an electron to form •O2-, which could react with •OH and H2O to form 1O2, which had relatively long life (10-6∼10-3 s), further promoting the efficient removal of antibiotics in water.

3.
Macromol Rapid Commun ; : e2400442, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108052

ABSTRACT

Non-precious metal-based nitrogen-doped carbon (M-Nx/C) shows great potential as a substitute for precious metal Pt-based catalysts. However, the conventional pyrolytic methods for forming M-Nx/C active sites are prone to issues such as the lack of synergistic interactions among bimetallic atoms and the potential encasement of active sites, leading to compromised catalytic efficiency and hindered mass transfer. In this work, a highly active FeCo-N-C@U-AC electrocatalyst is developed with a high density of active sites, adequate exposure of catalytic sites, and robust mass transfer capability using the chemical vapor-phase deposition (CVD) technique. The resulting catalyst demonstrates impressive oxygen reduction reaction (ORR) catalytic performance and stability, with half-wave potentials of 0.820 V (0.1 M HClO4) and 0.911 V (0.1 M KOH), respectively. It also exhibits significantly enhanced stability, retaining 93.25% and 98.38% of current after continuous 50 000 s of durability testing, surpassing the retention rates of Pt/C (80.31% in HClO4 and 84.96% in KOH electrolytes). Notably, when employed as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs) and zinc-air flow batteries (ZAFBs), the FeCo-N-C@U-AC catalyst delivers peak power densities of 859 and 162 mW·cm-2, respectively, showcasing competitive performance comparable to benchmark Pt/C.

4.
Angew Chem Int Ed Engl ; : e202408500, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115946

ABSTRACT

Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of Co-N4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90%/85% H2O2 selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.

5.
J Colloid Interface Sci ; 677(Pt A): 677-686, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39116565

ABSTRACT

Developing carbon-supported Pt-based electrocatalysts with high activity and long-durability for the oxygen reduction reaction (ORR) is an enormous challenge for their commercial applications due to the corrosion of carbon supports in acid/alkaline solution at high potential. In this work, a Janus structural TaON/graphene-like carbon (GLC) was synthesized via an in-situ molecular selfassembly strategy, which was used as a dual-carrier for platinum (Pt). The as-obtained Pt/TaON/GLC presents high half-wave potential (0.94 V vs. RHE), excellent mass (1.48 A mgPt-1) and specific (1.75 mA cmPt-2) activities at 0.9 V, and superior long-term durability with a minimal loss (8.0 %) of mass activity after 10,000 cycles in alkaline solution, outperforming those of Pt/C and other catalysts. The structural characterizations and density functional theory (DFT) calculations indicate that the Pt/TaON/GLC catalyst exhibits the maximum synergies, including enhanced interfacial electron density, improved charge transfer, enhanced O2 adsorption, andsuperimposed OO cleavage. This work shows a potential strategy for preparing the high-active and long-durable Pt-based electrocatalyst by synergism-promoted interface engineering.

6.
J Colloid Interface Sci ; 677(Pt A): 983-993, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39128292

ABSTRACT

Direct lignin fuel cells (DLFC) are one of the important forms of high value-added utilization of lignin. In this study, lignin was studied not only as a fuel but also as a catalyst. Specifically, Kraft lignin was modified with ZnCl2, KOH and THF (Tetrahydrofuran) respectively, and added to the catalyst after activation. The results of scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), Brunauer - Emmett - Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra shown that AL/FePc-NrGO (activated lignin/iron phthalocyanine/nitrogen-doped reduction of graphene oxide) three-dimensional composite catalyst has been synthesized. The results showed that KOH-activated Kraft lignin had the best performance as an oxygen reduction reaction (ORR) catalyst, with a half-wave potential (E1/2) of 0.73 V and a limiting diffusion current density of 4.3 mA cm-1. The THF-modified catalyst showed similar stability and methanol resistance to 20 % Pt/C at ORR. The ORR catalyst applied to the DLFC has the best electrical performance with an open circuit voltage (OCV) was 0.53 V and the maximum power density it could reach 95.29 mW m-2 when the catalyst was modified with THF. It is encouraging that the AL/FePc-NrGO catalyst has better-generated electricity performance than 20 % Pt/C. This work has provided a new idea for developing non-noble metal catalysts and studying direct biomass liquid fuel cells.

7.
Angew Chem Int Ed Engl ; : e202410123, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39132744

ABSTRACT

Carbon-based materials have been utilized as effective catalysts for hydrogen peroxide electrosynthesis via two-electron oxygen reduction reaction (2e ORR), however the insufficient selectivity and productivity still hindered the further industrial applications. In this work, we report the Fe-O4 motif activated graphitic carbon material which enabled highly selective H2O2 electrosynthesis operating at high current density with excellent anti-poisoning property. In the bulk production test, the concentration of H2O2 cumulated to 8.6 % in 24 h and the corresponding production rate of 33.5 mol gcat -1 h-1 outperformed all previously reported materials. Theoretical model backed by in situ characterization verified α-C surrounding the Fe-O4 motif as the actual reaction site in terms of thermodynamics and kinetics aspects. The strategy of activating carbon reaction site by metal center via oxo-bridge provides inspiring insights for the rational design of carbon materials for heterogeneous catalysis.

8.
ChemSusChem ; : e202401552, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135510

ABSTRACT

Fe single atoms (Fe SAs) based catalysts have received much attention in electrocatalytic oxygen reduction reaction (ORR) due to its low-cost and high activity. Yet, the facile synthesis of efficient and stable Fe SAs catalysts are still challenging. Here, we reported a Fe SAs anchored on N-doped mesoporous carbon microspheres (NC) catalyst via spraying drying and pyrolysis processes. The highly active Fe SAs are uniformly distributed on the NC matrix, which prevented the aggregation benefiting from the enhanced Fe-N bonds. Also, the mesoporous carbon structure is favorable for fast electron and mass transfer. The optimized Fe@NC-2-900 catalyst shows positive half wave potential (E1/2 = 0.86 V vs reversible hydrogen electrodes (RHE)) and starting potential (Eonset = 0.98 V vs RHE) in ORR, which is comparable to the commercial Pt/C catalyst (E1/2= 0.87 V, Eonset = 1.08 V). Outstanding stability with a current retention rate of 92.5% for 9 hours and good methanol tolerance are achieved. The assembled zinc-air batteries showed good stability up to 500 hours at a current density of 5 mA cm-2. This work shows potentials of Fe SAs based catalysts for the practical application in ORR and pave a new avenue for promoting their catalytic performances.

9.
Chem Asian J ; : e202400791, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136406

ABSTRACT

The H2O2 generation via the green electrochemical process is of high interest. For the H2O2 electrochemical generation, the oxygen reduction reaction (ORR) is important. Unfortunately, the ORR is kinetically sluggish and catalysts are needed. However, noble metal ORR catalysts are pricy and scarcely applicable in applications. Therefore, non-precious metal catalysts are desired. Heteroatom-doped carbons show promise as metal-free ORR catalysts. The ORR catalytic activity will be enhanced by the carbon's sp2 and/or sp3 engineering. For N, S co-doped and sp2/sp3 modulated carbon, a polymerizable ionic liquid of hydrolyzed vinyl imidazolium was studied. The carbon is studied as a metal-free catalyst for the ORR via the 2e-process. It is possible to get an onset potential of 0.88 V vs. RHE with approximately 50% selectivity for the H2O2. The current study offers a simple technique for synthesizing heteroatom-doped sp2/sp3 designed carbon as catalysts for the electroreduction of O2 to produce H2O2, and a new way of tunning the sp3/sp2 carbon catalytic activity by modulating the ionic liquid.

10.
Nano Lett ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119948

ABSTRACT

N-Doped carbon sheets based on edge engineering provide more opportunities for improving oxygen reduction reaction (ORR) active sites. However, with regard to the correlation between porous structural configurations and performances, it remains underexplored. Herein, a silica-assisted localized etching method was employed to create two-dimensional mesoporous carbon materials with customizable pore structures, abundant edge sites, and nitrogen functionalities. The mesoporous carbon exhibited superior electrocatalytic performance for the ORR compared to that of a 20 wt % Pt/C catalyst, achieving a half-wave potential of 0.88 V versus RHE, situating them in the leading level of the reported carbon electrocatalysts. Experimental data suggest that the edge graphitic nitrogen sites played a crucial role in the ORR process. The three-dimensional interconnected pores provided a high density of active sites for the ORR and facilitated the efficient transport of electrons. These unique properties make the carbon sheets a promising candidate for highly efficient air cathodes in rechargeable Zn-air batteries.

11.
Adv Mater ; : e2404103, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120472

ABSTRACT

The activity and durability of chemical/electrochemical catalysts are significantly influenced by their surface environments, highlighting the importance of thoroughly examining the catalyst surface. Here, Cu-substituted La0.6Sr0.4Co0.2Fe0.8O3-δ is selected, a state-of-the-art material for oxygen reduction reaction (ORR), to explore the real-time evolution of surface morphology and chemistry under a reducing atmosphere at elevated temperatures. Remarkably, in a pioneering observation, it is discovered that the perovskite surface starts to amorphize at an unusually low temperature of approximately 100 °C and multicomponent metal nanocatalysts additionally form on the amorphous surface as the temperature raises to 400 °C. Moreover, this investigation into the stability of the resulting amorphous layer under oxidizing conditions reveals that the amorphous structure can withstand a high-temperature oxidizing atmosphere (≥650 °C) only when it has undergone sufficient reduction for an extended period. Therefore, the coexistence of the active nanocatalysts and defective amorphous surface leads to a nearly 100% enhancement in the electrode resistance for the ORR over 200 h without significant degradation. These observations provide a new catalytic design strategy for using redox-dynamic perovskite oxide host materials.

12.
J Colloid Interface Sci ; 677(Pt A): 771-780, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39121661

ABSTRACT

Oxygen reduction reaction (ORR) serves as the foundation for various electrochemical energy storage devices. Fe/NC catalysts are expected to replace commercial Pt/C as oxygen electrode catalysts based on the structural tunability at the atomic level, abundant iron ore reserves and excellent activity. Nevertheless, the lack of durability and low active site density impede its advancement. In this work, a durable catalyst, CuFe/NC, for ORR was prepared by modulating the interfacial composition and electronic structure. The introduction of Cu nanoclusters partially eliminates the Fenton effect from Fe and optimizes the electron structure of FeNx, thereby effectively enhancing the long-term durability and activity. The prepared CuFe/NC exhibits a half-wave potential (E1/2) of 0.90 V and superior stability with a decrease in E1/2 of only 20 mV after 10,000 cycles. The assembled alkaline Zinc-Air batteries (ZABs) with CuFe/NC exhibit an open-circuit potential of 1.458 V. At a current density of 5 mA cm-2, the batteries are capable of operation for 600 h with a stable polarization. This CuFe/NC may promote the practical application of novel and renewable electrochemical energy storage devices.

13.
J Colloid Interface Sci ; 677(Pt A): 800-811, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39121664

ABSTRACT

Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.

14.
Small ; : e2405157, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126174

ABSTRACT

Electrochemical oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) are greatly significant in renewable energy-related devices and carbon-neutral closed cycle, while the development of robust and highly efficient electrocatalysts has remained challenges. Herein, a hybrid electrocatalyst, featuring axial N-coordinated Fe single atom sites on hierarchically N, P-codoped porous carbon support and Fe nanoclusters as electron reservoir (FeNCs/FeSAs-NPC), is fabricated via in situ thermal transformation of the precursor of a supramolecular polymer initiated by intermolecular hydrogen bonds co-assembly. The FeNCs/FeSAs-NPC catalyst manifests superior oxygen reduction activity with a half-wave potential of 0.91 V in alkaline solution, as well as high CO2 to CO Faraday efficiency (FE) of surpassing 90% in a wide potential window from -0.40 to -0.85 V, along with excellent electrochemical durability. Theoretical calculations indicate that the electron reservoir effect of Fe nanoclusters can trigger the electron redistribution of the atomic Fe moieties, facilitating the activation of O2 and CO2 molecules, lowering the energy barriers for rate-determining step, and thus contributing to the accelerated ORR and CO2RR kinetics. This work offers an effective design of electron coupling catalysts that have advanced single atoms coexisting with nanoclusters for efficient ORR and CO2RR.

15.
Natl Sci Rev ; 11(8): nwae233, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119219

ABSTRACT

Platinum-based intermetallic compounds (IMCs) play a vital role as electrocatalysts in a range of energy and environmental technologies, such as proton exchange membrane fuel cells. However, the synthesis of IMCs necessitates recombination of ordered Pt-M metallic bonds with high temperature driving, which is generally accompanied by side effects for catalysts' structure and performance. In this work, we highlight that semimetal atoms can trigger covalent interactions to break the synthesis-temperature limitation of platinum-based intermetallic compounds and benefit fuel-cell electrocatalysis. Attributed to partial fillings of p-block in semimetal elements, the strong covalent interaction of d-p π backbonding can benefit the recombination of ordered Pt-M metallic bonds (PtGe, PtSb and PtTe) in the synthesis process. Moreover, this covalent interaction in metallic states can further promote both electron transport and orbital fillings of active sites in fuel cells. The semimetal-Pt IMCs were obtained with a temperature 300 K lower than that needed for the synthesis of metal-Pt intermetallic compounds and reached the highest CO-tolerant oxygen reduction activity (0.794 A mg-1 at 0.9 V and 5.1% decay under CO poisoning) among reported electrocatalysts. We anticipate that semimetal-Pt IMCs will offer new insights for the rational design of advanced electrocatalysts for fuel cells.

16.
ACS Nano ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108203

ABSTRACT

Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.

17.
ACS Nano ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129497

ABSTRACT

In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.

18.
Article in English | MEDLINE | ID: mdl-39141374

ABSTRACT

Transition metal-nitrogen-carbon complexes, featuring single metal atoms embedded in a nitrogen-doped carbon matrix, emerge as promising alternatives to traditional platinum-based catalysts, offering cost-effectiveness, abundance, and enhanced catalytic performance. This work introduces a novel method for the etching and doping of zeolitic imidazolate frameworks (ZIFs) with transition metals, creating a uniform distribution of secondary metal centers on ZIF surfaces. By disrupting the crystalline symmetry of ZIFs through synthetic defect engineering, we gain access to their entire internal volume, creating multichannel pathways. The absorption of metal ions is theoretically simulated, demonstrating their thermodynamically spontaneous nature. The selective removal of defect channels under Lewis acidic conditions, induced by metal ion alcoholysis/hydrolysis, facilitates the introduction of metal atoms into ZIF cavities. The resulting single-atom catalyst, after pyrolysis, features a three-dimensional (3D) multichannel structure, high surface area, and uniformly dispersed metal atoms within the N-doped carbon matrix, establishing it as an exceptional catalyst for the oxygen reduction reaction (ORR). Our findings highlight the potential of using metal etching in defect-engineered metal-organic frameworks (MOFs) for single-atom catalyst preparation, paving the way for the next generation of high-performance, cost-effective ORR catalysts in sustainable energy systems.

19.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124925

ABSTRACT

Exploring highly active electrocatalysts as platinum (Pt) substitutes for the oxygen reduction reaction (ORR) remains a significant challenge. In this work, single Mn embedded nitrogen-doped graphene (MnN4) with and without halogen ligands (F, Cl, Br, and I) modifying were systematically investigated by density functional theory (DFT) calculations. The calculated results indicated that these ligands can transform the dyz and dxz orbitals of Mn atom in MnN4 near the Fermi-level into dz2 orbital, and shift the d-band center away from the Fermi-level to reduce the adsorption capacity for reaction intermediates, thus enhancing the ORR catalytic activity of MnN4. Notably, Br and I modified MnN4 respectively with the lowest overpotentials of 0.41 and 0.39 V, possess superior ORR catalytic activity. This work is helpful for comprehensively understanding the ligand modification mechanism of single-atom catalysts and develops highly active ORR electrocatalysts.

20.
Adv Mater ; : e2408094, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096074

ABSTRACT

Multinuclear metal clusters are ideal candidates to catalyze small molecule activation reactions involving the transfer of multiple electrons. However, synthesizing active metal clusters is a big challenge. Herein, on constructing an unparalleled Co4(SO4)4 cluster within porphyrin-based metal-organic frameworks (MOFs) and the electrocatalytic features of such Co4(SO4)4 clusters for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is reported. The reaction of CoII sulfate and metal complexes of tetrakis(4-pyridyl)porphyrin under solvothermal conditions afforded Co4-M-MOFs (M═Co, Cu, and Zn). Crystallographic studies revealed that these Co4-M-MOFs have the same framework structure, having the Co4(SO4)4 clusters connected by metalloporphyrin units through Co─Npyridyl bonds. In the Co4(SO4)4 cluster, the four CoII ions are chemically and symmetrically equivalent and are each coordinated with four sulfate O atoms to give a distorted cube-like structure. Electrocatalytic studies showed that these Co4-M-MOFs are all active for electrocatalytic OER and ORR. Importantly, by regulating the activity of the metalloporphyrin units, it is confirmed that the Co4(SO4)4 cluster is active for oxygen electrocatalysis. With the use of Co porphyrins as connecting units, Co4-Co-MOF displays the highest electrocatalytic activity in this series of MOFs by showing a 10 mA cm-2 OER current density at 357 mV overpotential and an ORR half-wave potential at 0.83 V versus reversible hydrogen electrode (RHE). Theoretical studies revealed the synergistic effect of two proximal Co atoms in the Co4(SO4)4 cluster in OER by facilitating the formation of O─O bonds. This work is of fundamental significance to present the construction of Co4(SO4)4 clusters in framework structures for oxygen electrocatalysis and to demonstrate the cooperation between two proximal Co atoms in such clusters during the O─O bond formation process.

SELECTION OF CITATIONS
SEARCH DETAIL