Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.340
Filter
1.
Theranostics ; 14(10): 4090-4106, 2024.
Article in English | MEDLINE | ID: mdl-38994016

ABSTRACT

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Subject(s)
Arginine , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Animals , Arginine/metabolism , Arginine/analogs & derivatives , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Feedback, Physiological , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Mice, Nude , Signal Transduction , Phase Separation , RNA-Binding Proteins
2.
Zool Res ; 45(4): 937-950, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39021082

ABSTRACT

Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.


Subject(s)
Autophagy-Related Proteins , Autophagy , Neural Stem Cells , Animals , Neural Stem Cells/physiology , Neural Stem Cells/metabolism , Mice , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Gene Expression Regulation , Neoplasm Proteins
3.
Biomed Pharmacother ; 177: 117094, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996707

ABSTRACT

The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.

4.
Front Cell Dev Biol ; 12: 1421360, 2024.
Article in English | MEDLINE | ID: mdl-39035028

ABSTRACT

Introduction: Abnormal spreading of alpha-synuclein (αS), a hallmark of Parkinson's disease, is known to promote peripheral inflammation, which occurs in part via functional alterations in monocytes/macrophages. However, underlying intracellular mechanisms remain unclear. Methods: Herein we investigate the subcellular, molecular, and functional effects of excess αS in human THP-1 monocytic cell line, THP-1-derived macrophages, and at least preliminarily, in primary monocyte-derived macrophages (MDMs). In cells cultured w/wo recombinant αS (1 µM) for 4 h and 24 h, by Confocal microscopy, Western Blot, RT-qPCR, Elisa, and Flow Cytometry we assessed: i) αS internalization; ii) cytokine/chemokine expression/secretion, and C-C motif chemokine receptor 2 (CCR2) levels; iii) autophagy (LC3II/I, LAMP1/LysoTracker, p62, pS6/total S6); and iv) lipid droplets (LDs) accumulation, and cholesterol pathway gene expression. Transwell migration assay was employed to measure THP-1 cell migration/chemotaxis, while FITC-IgG-bead assay was used to analyze phagocytic capacity, and the fate of phagocytosed cargo in THP-1-derived macrophages. Results: Extracellular αS was internalized by THP-1 cells, THP-1-derived macrophages, and MDMs. In THP1 cells, αS induced a general pro-inflammatory profile and conditioned media from αS-exposed THP-1 cells potently attracted unstimulated cells. However, CCL2 secretion peaked at 4 h αS, consistent with early internalization of its receptor CCR2, while this was blunted at 24 h αS exposure, when CCR2 recycled back to the plasma membrane. Again, 4 h αS-exposed THP-1 cells showed increased spontaneous migration, while 24 h αS-exposed cells showed reduced chemotaxis. This occurred in the absence of cell toxicity and was associated with upregulation of autophagy/lysosomal markers, suggesting a pro-survival/tolerance mechanism against stress-related inflammation. Instead, in THP-1-derived macrophages, αS time-dependently potentiated the intracellular accumulation, and release of pro-inflammatory mediators. This was accompanied by mild toxicity, reduced autophagy-lysosomal markers, defective LDs formation, as well as impaired phagocytosis, and the appearance of stagnant lysosomes engulfed with phagocytosed cargo, suggesting a status of macrophage exhaustion reminiscent of hypophagia. Discussion: In summary, despite an apparently similar pro-inflammatory phenotype, monocytes and macrophages respond differently to intracellular αS accumulation in terms of cell survival, metabolism, and functions. Our results suggest that in periphery, αS exerts cell- and context-specific biological effects bridging alterations of autophagy, lipid dynamics, and inflammatory pathways.

5.
Nutrients ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999824

ABSTRACT

Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of Ecklonia cava polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Using human neuroblastoma SH-SY5Y cells and PD model mice, we found that ECP, rich in the antioxidant polyphenol phlorotannin, boosted the gene expression and functionality of the antioxidant enzyme NAD(P)H quinone oxidoreductase-1. ECP also promoted Nrf2 nuclear translocation and increased p62 expression, suggesting that p62 helps sustain Nrf2 activation via a positive feedback loop. The neuroprotective effect of ECP was significantly reduced by Compound C (CC), an AMP-activated protein kinase (AMPK) inhibitor, which also suppressed Nrf2 nuclear translocation. In PD model mice, ECPs improved motor functions impaired by rotenone, as assessed by the pole test and wire-hanging test, and restored intestinal motor function and colon tissue morphology. Additionally, ECPs increased tyrosine hydroxylase expression in the substantia nigra, indicating a protective effect on dopaminergic neurons. These findings suggest that ECP has a preventative effect on PD.


Subject(s)
NF-E2-Related Factor 2 , Neuroprotective Agents , Parkinson Disease , Polyphenols , Rotenone , NF-E2-Related Factor 2/metabolism , Animals , Polyphenols/pharmacology , Humans , Neuroprotective Agents/pharmacology , Mice , Male , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Parkinson Disease/drug therapy , Antioxidant Response Elements/drug effects , Signal Transduction/drug effects , Disease Models, Animal , Cell Line, Tumor , Antioxidants/pharmacology , Mice, Inbred C57BL , Plant Extracts/pharmacology , NAD(P)H Dehydrogenase (Quinone)/metabolism
6.
Int J Biol Sci ; 20(9): 3317-3333, 2024.
Article in English | MEDLINE | ID: mdl-38993555

ABSTRACT

The glomerular podocyte, a terminally differentiated cell, is crucial for the integrity of the glomerular filtration barrier. The re-entry of podocytes into the mitotic phase results in injuries or death, known as mitotic catastrophe (MC), which significantly contributes to the progression of diabetic nephropathy (DN). Furthermore, P62-mediated autophagic flux has been shown to regulate DN-induced podocyte injury. Although previous studies, including ours, have demonstrated that ursolic acid (UA) mitigates podocyte injury by enhancing autophagy under high glucose conditions, the protective functions and potential regulatory mechanisms of UA against DN have not been fully elucidated. For aiming to investigate the regulatory mechanism of podocyte injuries in DN progression, and the protective function of UA treatment against DN progression, we utilized db/db mice and high glucose (HG)-induced podocyte models in vivo and in vitro, with or without UA administration. Our findings indicate that UA treatment reduced DN progression by improving biochemical indices. P62 accumulation led to Murine Double Minute gene 2 (MDM2)-regulated MC in podocytes during DN, which was ameliorated by UA through enhanced P62-mediated autophagy. Additionally, the overexpression of NF-κB p65 or TNF-α abolished the protective effects of UA both in vivo and in vitro. Overall, our results provide strong evidence that UA could be a potential therapeutic agent for DN, regulated by inhibiting podocyte MC through the NF-κB/MDM2/Notch1 pathway by targeting autophagic-P62 accumulation.


Subject(s)
Autophagy , Diabetic Nephropathies , Podocytes , Triterpenes , Ursolic Acid , Podocytes/drug effects , Podocytes/metabolism , Animals , Triterpenes/pharmacology , Triterpenes/therapeutic use , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Mice , Autophagy/drug effects , Mitosis/drug effects , Male , Mice, Inbred C57BL
7.
J Agric Food Chem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016055

ABSTRACT

Butachlor is widely used in agriculture around the world and therefore poses environmental and public health hazards due to persistent and poor biodegradability. Ferroptosis is a type of iron-mediated cell death controlled by glutathione (GSH) and GPX4 inhibition. P62 is an essential autophagy adaptor that regulates Keap1 to activate nuclear factor erythroid 2-related factor 2 (Nrf2), which effectively suppresses lipid peroxidation, thereby relieving ferroptosis. Here, we found that butachlor caused changes in splenic macrophage structure, especially impaired mitochondrial morphology with disordered structure, which is suggestive of the occurrence of ferroptosis. This was further confirmed by the detection of iron metabolism, the GSH system, and lipid peroxidation. Mechanistically, butachlor suppressed the protein level of p62 and promoted Keap1-mediated degradation of Nrf2, which results in decreased GPX4 expression and accelerated splenic macrophage ferroptosis. These findings suggest that targeting the p62-Nrf2-GPX4 signaling axis may be a promising strategy for treating inflammatory diseases.

8.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890703

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Subject(s)
Coumarins , Animals , Mice , Coumarins/pharmacology , Autophagy/drug effects , Autophagy/physiology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Retina/metabolism , Retina/drug effects , Retina/pathology , Mitophagy/drug effects , Mitophagy/physiology , Sequestosome-1 Protein/metabolism , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Disease Models, Animal , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Iodates/toxicity
9.
Mol Ther ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

10.
Dev Cell ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38897197

ABSTRACT

Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions.

11.
Cytokine ; 180: 156668, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851146

ABSTRACT

BACKGROUND: Twin pregnancies are associated with complications and adverse outcomes. The number of twin pregnancies has increased in the last decades, due to the use of assisted reproductive techniques and delayed childbearing. Analysis of changes that occur during twin pregnancy progression and their association with outcome will lead to improved clinical interventions. OBJECTIVE: We evaluated if the plasma concentration of select cytokines and the level of sequestosome-1 (p62) in peripheral blood mononuclear cells (PBMCs) during each trimester of twin gestations was predictive of pregnancy outcome. STUDY DESIGN: This prospective, observational study was conducted at Careggi University Hospital, Florence, Italy. Plasma from 82 women with twin pregnancies was collected in each trimester for measurement of interleukin (IL)-1ß, IL-6, IL-10, IL-12 and tumor necrosis factor (TNF)-α. The intracellular PBMC concentration of p62, a protein involved in autophagy, kinase activity and cell differentiation, was also determined. RESULTS: IL-1ß (p < 0.001), IL-6 (p < 0.001), TNF-α (p < 0.001) and p62 (p < 0.05) increased from the 1st to the 2nd to the 3rd trimester. The TNF-α level was correlated with the IL-1ß concentration in the 1st and 3rd trimesters p < 0.01) and with the IL-6 concentration in each of the three trimesters (p < 0.01). The intracellular p62 level in PBMCs was negatively correlated with the concentration of IL-1ß in the 2nd trimester (p < 0.05) and negatively correlated with the IL-6 level in the 3rd trimester (p < 0.05). The TNF-α level was significantly higher in the 2nd (p < 0.05) and 3rd (p < 0.001) trimester in women with a spontaneous preterm delivery. The TNF-α concentrations in the 2nd (p < 0.05) and 3rd (p < 0.01) trimester, respectively, and 3rd trimester IL-6 (p < 0.01), were negatively associated with gestational age at delivery. The concentration of IL-6 was highest in the 2nd (p < 0.05) and 3rd (p < 0.05) trimesters in women who utilized assisted reproductive technologies. An elevated IL-1ß level in the 3rd trimester was associated with gestational diabetes mellitus (p < 0.05). CONCLUSION: Variations in cytokine levels between individual women during the three trimesters of twin gestations are predictive of spontaneous preterm delivery and the onset of gestational diabetes.


Subject(s)
Cytokines , Pregnancy Outcome , Pregnancy, Twin , Sequestosome-1 Protein , Humans , Pregnancy , Female , Adult , Cytokines/blood , Sequestosome-1 Protein/metabolism , Pregnancy, Twin/blood , Prospective Studies , Leukocytes, Mononuclear/metabolism , Pregnancy Trimesters/blood
12.
Pathol Res Pract ; 260: 155414, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38901141

ABSTRACT

Autophagy is a catabolic pathway involved both in tissue homeostasis and in cellular response to stress. The precise role of autophagy in cancer is still undefined and seems to depend on the tumor stage, appearing tumor-suppressive in physiological conditions and helpful to tumor progression in the established tumor. Here we analyzed by immunohistochemistry Beclin-1, p62, and LC3B, autophagic markers, in human specimens of normal breast, bone metastasis together with pair-matched invasive breast carcinoma of no special type (IBC-NST) as well as non-metastatic breast carcinoma, to disclose the possibility that they could be early prognostic indicators of the evolution of the disease toward the worst outcome. Different regions of metastatic carcinomas, i.e., areas adjacent to the tumor without signs of neoplastic growth, dysplastic lesions, and areas with invasive growth were considered. The pattern of autophagic parameters showed differences among the stages of breast carcinoma progression with a trend that indicated the activation of autophagic process in normal breast (Beclin-1 more elevated than p62), a pattern that was maintained in non-metastatic carcinoma. As the neoplasia proceeds with malignancy, the modification of the pattern of expression of autophagic markers (low ratio between Beclin-1 and p62) in areas of invasive growth of carcinomas suggested inhibition of the process. Of note, the parameters showed a different pattern in bone metastasis with respect to bone metastatic (bm)-IBC-NST, suggesting the reactivation of the autophagic process in the new growth site, helpful to the colonization. The course of autophagy markers during tumor progression could have a prognostic value towards bone metastasis and reveal different roles of the process in different phases of neoplastic growth. The understanding of the role of autophagy in bone metastasis could disclose new therapeutic targets to improve the conditions of patients.

13.
Int J Biol Sci ; 20(8): 3156-3172, 2024.
Article in English | MEDLINE | ID: mdl-38904009

ABSTRACT

Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Pancreatic Neoplasms , Humans , Ferroptosis/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Cell Line, Tumor , Animals , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mice , Proteostasis , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice, Nude
14.
Exp Neurol ; 378: 114822, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823676

ABSTRACT

Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.


Subject(s)
Depression , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone , Stroke , Animals , Rats , Male , Depression/etiology , Depression/drug therapy , Depression/metabolism , Stroke/complications , Stroke/drug therapy , Stroke/psychology , Stroke/metabolism , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/metabolism , Humans , Down-Regulation/drug effects , Middle Aged , Disease Models, Animal , Female , Aged , Sequestosome-1 Protein/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Corticotropin-Releasing Hormone/metabolism
15.
Toxicology ; 506: 153863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878878

ABSTRACT

Patulin (PAT), the most common mycotoxin, is widespread in foods and beverages which poses a serious food safety issue to human health. Our previous research confirmed that exposure to PAT can lead to acute kidney injury (AKI). Curcumin is the most abundant active ingredient in turmeric rhizome with various biological activities. The aim of this study is to investigate whether curcumin can prevent the renal injury caused by PAT, and to explore potential mechanisms. In vivo, supplementation with curcumin attenuated PAT-induced ferroptosis. Mechanically, curcumin inhibited autophagy, led to the accumulation of p62 and its interaction with Keap1, promoted the nuclear translocation of nuclear factor E2 related factor 2 (Nrf2), and increased the expression of antioxidant stress factors in the process of ferroptosis. These results have also been confirmed in HKC cell experiments. Furthermore, knockdown of Nrf2 in HKC cells abrogated the protective effect of curcumin on ferroptosis. In conclusion, we confirmed that curcumin mitigated PAT-induced AKI by inhibiting ferroptosis via activation of the p62/Keap1/Nrf2 pathway. This study provides new potential targets and ideas for the prevention and treatment of PAT.


Subject(s)
Curcumin , Ferroptosis , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Patulin , Signal Transduction , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Curcumin/pharmacology , Ferroptosis/drug effects , Signal Transduction/drug effects , Animals , Humans , Male , Patulin/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Sequestosome-1 Protein/metabolism , Cell Line , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice , Mice, Inbred C57BL
16.
J Pathol Transl Med ; 58(4): 174-181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910358

ABSTRACT

BACKGROUND: The identification of idiopathic inflammatory myopathies (IIMs) requires a comprehensive analysis involving clinical manifestations and histological findings. This study aims to provide insights into the histopathological and immunohistochemical aspects of IIMs. METHODS: This retrospective case series involved 56 patients diagnosed with IIMs at the Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, from 2019 to 2023. The histology and immunohistochemical expression of HLA-ABC, HLA-DR, C5b-9, Mx1/2/3, and p62 were detected. RESULTS: We examined six categories of inflammatory myopathy, including immunemediated necrotizing myopathy (58.9%), dermatomyositis (DM; 23.2%), overlap myositis (8.9%), antisynthetase syndrome (5.4%), inclusion body myositis (IBM; 1.8%), and polymyositis (1.8%). The average age of the patients was 49.7 ± 16.1 years, with a female-to-male ratio of 3:1. Inflammatory cell infiltration in the endomysium was present in 62.5% of cases, perifascicular atrophy was found in 17.8%, and fiber necrosis was observed in 42 cases (75.0%). Rimmed vacuoles were present in 100% of cases in the IBM group. Immunohistochemistry showed the following positivity rates: HLA-ABC (89.2%), HLA-DR (19.6%), C5b-9 (57.1%), and Mx1/2/3 (10.7%). Mx1/2/3 expression was high in DM cases. p62 vacuole deposits were noted in the IBM case. The combination of membrane attack complex and major histocompatibility complex I helped detect IIMs in 96% of cases. CONCLUSIONS: The diagnosis of IIMs and their subtypes should be based on clinical features and histopathological characteristics. Immunohistochemistry plays a crucial role in the diagnosis and differentiation of these subgroups.

17.
Fish Shellfish Immunol ; 151: 109719, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914181

ABSTRACT

Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Phylogeny , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Rhabdoviridae/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Gene Expression Regulation/immunology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence , Autophagy/immunology
18.
Appl Microbiol Biotechnol ; 108(1): 355, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822832

ABSTRACT

Getah virus (GETV) is a re-emerging mosquito-borne alphavirus that is highly pathogenic, mainly to pigs and horses. There are no vaccines or treatments available for GETV in swine in China. Therefore, the development of a simple, rapid, specific, and sensitive serological assay for GETV antibodies is essential for the prevention and control of GETV. Current antibody monitoring methods are time-consuming, expensive, and dependent on specialized instrumentation, and these features are not conducive to rapid detection in clinical samples. To address these problem, we developed immunochromatographic test strips (ICTS) using eukaryotically expressed soluble recombinant p62-E1 protein of GETV as a labelled antigen, which has good detection sensitivity and no cross-reactivity with other common porcine virus-positive sera. The ICTS is highly compatible with IFA and ELISA and can be stored for 1 month at 37 °C and for at least 3 months at room temperature. Hence, p62-E1-based ICTS is a rapid, accurate, and convenient method for rapid on-site detection of GETV antibodies. KEY POINTS: • We established a rapid antibody detection method that can monitor GETV infection • We developed colloidal gold test strips with high sensitivity and specificity • The development of colloidal gold test strips will aid in the field serologic detection of GETV.


Subject(s)
Alphavirus , Antibodies, Viral , Gold Colloid , Sensitivity and Specificity , Animals , Gold Colloid/chemistry , Antibodies, Viral/blood , Antibodies, Viral/immunology , Alphavirus/immunology , Swine , Chromatography, Affinity/methods , Alphavirus Infections/diagnosis , Alphavirus Infections/immunology , Swine Diseases/diagnosis , Swine Diseases/virology , Reagent Strips , China , Enzyme-Linked Immunosorbent Assay/methods
19.
Cell Mol Life Sci ; 81(1): 221, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763964

ABSTRACT

In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.


Subject(s)
Follicle Stimulating Hormone , Granulosa Cells , Ovarian Follicle , Sequestosome-1 Protein , Ubiquitination , WT1 Proteins , Animals , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Female , WT1 Proteins/metabolism , WT1 Proteins/genetics , Mice , Ovarian Follicle/metabolism , Ovarian Follicle/drug effects , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Mice, Inbred C57BL , Autophagy/drug effects , Proteolysis/drug effects , Humans , Mice, Knockout
20.
J Hazard Mater ; 473: 134560, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759404

ABSTRACT

Benzo[a]pyrene (BaP) and its metabolic end product benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), are known toxic environmental pollutants. This study aimed to analyze whether sub-chronic BPDE exposure initiated pulmonary fibrosis and the potential mechanisms. In this work, male C57BL6/J mice were exposed to BPDE by dynamic inhalation exposure for 8 weeks. Our results indicated that sub-chronic BPDE exposure evoked pulmonary fibrosis and epithelial-mesenchymal transition (EMT) in mice. Both in vivo and in vitro, BPDE exposure promoted nuclear translocation of Snail. Further experiments indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) and p62 were upregulated in BPDE-exposed alveolar epithelial cells. Moreover, Nrf2 siRNA transfection evidently attenuated BPDE-induced p62 upregulation. Besides, p62 shRNA inhibited BPDE-incurred Snail nuclear translocation and EMT. Mechanically, BPDE facilitated physical interaction between p62 and Snail in the nucleus, then repressed Snail protein degradation by p62-dependent autophagy-lysosome pathway, and finally upregulated transcriptional activity of Snail. Additionally, aryl hydrocarbon receptor (AhR) was activated in BPDE-treated alveolar epithelial cells. Dual-luciferase assay indicated activating AhR could bind to Nrf2 gene promoter. Moreover, pretreatment with CH223191 or α-naphthoflavone (α-NF), AhR antagonists, inhibited BPDE-activated Nrf2-p62 signaling, and alleviated BPDE-induced EMT and pulmonary fibrosis in mice. Taken together, AhR-mediated Nrf2-p62 signaling contributes to BaP-induced EMT and pulmonary fibrosis.


Subject(s)
Benzo(a)pyrene , Epithelial-Mesenchymal Transition , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Pulmonary Fibrosis , Receptors, Aryl Hydrocarbon , Signal Transduction , Animals , Epithelial-Mesenchymal Transition/drug effects , NF-E2-Related Factor 2/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Benzo(a)pyrene/toxicity , Male , Signal Transduction/drug effects , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Mice , Sequestosome-1 Protein/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL