Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064952

ABSTRACT

The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au10 nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics. Furthermore, we computed the thermal population and infrared Boltzmann spectrum at a finite temperature and compared it with the validated experimental data. Moreover, we performed the chemical bonding analysis using the quantum theory of atoms in molecules (QTAIM) approach and the adaptive natural density partitioning method (AdNDP) to shed light on the bonding of Au atoms in the low-energy structures. In the calculations, we take into consideration the relativistic effects through the zero-order regular approximation (ZORA), the dispersion through Grimme's dispersion with Becke-Johnson damping (D3BJ), and we employed nanothermodynamics to consider temperature contributions. Small Au clusters prefer the planar shape, and the transition from 2D to 3D could take place at atomic clusters consisting of ten atoms, which could be affected by temperature, relativistic effects, and dispersion. We analyzed the energetic ordering of structures calculated using DFT with ZORA and single-point energy calculation employing the DLPNO-CCSD(T) methodology. Our findings indicate that the planar lowest energy structure computed with DFT is not the lowest energy structure computed at the DLPN0-CCSD(T) level of theory. The computed thermal population indicates that the 2D elongated hexagon configuration strongly dominates at a temperature range of 50-800 K. Based on the thermal population, at a temperature of 100 K, the computed IR Boltzmann spectrum agrees with the experimental IR spectrum. The chemical bonding analysis on the lowest energy structure indicates that the cluster bond is due only to the electrons of the 6 s orbital, and the Au d orbitals do not participate in the bonding of this system.

2.
Braz J Microbiol ; 55(3): 2179-2187, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38874743

ABSTRACT

An actinobacteria strain was isolated from an olive waste mill and tested for protease production on skimmed milk media. The strain identification was achieved through both 16 S rDNA sequencing and phenotypic characterization. The enzyme was purified using the ammonium sulfate/t-butanol three-phase partitioning (TPP) method, followed by characterization to investigate the effect of pH, temperature, and various chemical agents. Subsequently, the enzyme was assessed for its milk coagulation activity. The strain belonging to the Streptomyces genera, exhibits significant phylogenetic and phenotypic differences from the aligned species, suggesting its novelty as a new strain. The enzyme was best separated in the TPP aqueous phase with a 5.35 fold and 56.25% yield. Optimal activity was observed at pH 9.0 and 60 °C, with more than half of the activity retained within the pH range of 7-10 over one hour. The protease demonstrated complete stability between 30 and 60 °C. While metallic ions enhanced enzyme activity, EDTA acted as an inhibitor. The enzyme displayed resistance to H2O2, SDS, Tween 80, and Triton X-100. Notably, it was activated in organic solvents (ethyl acetate, petroleum ether, and xylene), maintaining > 75% of its original activity in butanol, ethanol, and methanol. Additionally, the enzyme yielded high milk coagulant activity of 11,478 SU/mL. The new Streptomyces sp. protease revealed high activity and stability under a wide range of biochemical conditions. Its use in the dairy industry appears particularly promising. Further industrial process investigations will be valuable in determining potential uses for this enzyme.


Subject(s)
Enzyme Stability , Milk , Peptide Hydrolases , Phylogeny , Streptomyces , Temperature , Streptomyces/isolation & purification , Streptomyces/enzymology , Streptomyces/genetics , Streptomyces/classification , Milk/microbiology , Animals , Hydrogen-Ion Concentration , Peptide Hydrolases/metabolism , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , RNA, Ribosomal, 16S/genetics
3.
Environ Sci Pollut Res Int ; 31(23): 34309-34323, 2024 May.
Article in English | MEDLINE | ID: mdl-38698097

ABSTRACT

Droughts are becoming more intense and frequent in the Brazilian semiarid because of El Niño and global climate changes. The Jaguaribe River estuary is a semiarid ecosystem that experiences a reduction in freshwater discharges due to droughts and river damming. The decrease in freshwater fluxes has increased metal availability through the water residence time increase in the Jaguaribe River estuary. Then, this study aimed to evaluate the dissolved organic matter quality and its interaction with metals in the Jaguaribe River estuary after a severe drought period. It was performed through carbon analyses, fluorescence spectroscopy, ultrafiltration technique, and determinations of metals by ICP-MS. Optical analysis showed that the dissolved organic carbon (DOC) was preponderantly composed of terrestrial-derived humic compounds, while the low ratio between the particulate organic carbon (POC) and chlorophyll-a indicated that POC was predominantly phytoplankton-derived. DOC and POC presented non-conservative removal during the estuarine mixing. DOM and dissolved elements were mostly distributed within the LMW fraction and presented a low percentage in the colloidal fraction. Li, Rb, Sr, Mo, and U showed conservative behavior, while Cu, Fe, Cr, and V had non-conservative behavior with a significant positive correlation with DOM, suggesting DOM as a relevant driver of metal availability at the Jaguaribe River estuary even during the rainy season.


Subject(s)
Environmental Monitoring , Estuaries , Metals , Water Pollutants, Chemical , Brazil , Metals/analysis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Humic Substances
4.
Sci Rep ; 14(1): 12527, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822023

ABSTRACT

Invasive species are often generalists that can take advantage of formerly unexploited resources. The existence of such vacant niches is more likely in species-poor systems like the Baltic Sea. The suspension feeding wedge clam, Rangia cuneata, native to estuarine environments in the Gulf of Mexico, was sighted for the first time in the southeastern Baltic in 2010 and a few years later in the northern Baltic along the Swedish coast. To explore possible competition for food resources between R. cuneata and the three native clams inhabiting Baltic shallow soft bottoms, stable isotope and fatty acid analyses were conducted. There was no overlap between R. cuneata and any of the native species in either stable isotope or fatty acid niches. This suggests efficient partitioning of resources; multivariate analyses indicate that separation was driven mainly by δ13C and by fatty acids reflecting diatoms and cyanobacteria, respectively (e.g. 16:1ω7 and 18:3ω3). R. cuneata reflected seasonal variation in phytoplankton more than other clams reflecting higher trophic plasticity. In conclusion, the addition of R. cuneata to the Baltic shallow soft bottoms suggests the existence of a vacant trophic niche in these sediment habitats, however the long-term effects on other species and nutrient cycling requires further studies focusing on the population dynamics of R. cuneata and its impact on the Baltic Sea ecosystem.


Subject(s)
Bivalvia , Ecosystem , Geologic Sediments , Animals , Geologic Sediments/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Carbon Isotopes/analysis , Introduced Species , Seasons , Food Chain , Oceans and Seas , Phytoplankton
5.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654650

ABSTRACT

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Subject(s)
Biological Evolution , Body Size , Phylogeny , Animals , Passeriformes/physiology , Bayes Theorem , South America , Birds/physiology
6.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641865

ABSTRACT

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Subject(s)
Carbon , Eucalyptus , Photosynthesis , Trees , Water , Wood , Eucalyptus/physiology , Eucalyptus/metabolism , Carbon/metabolism , Trees/physiology , Trees/metabolism , Water/metabolism , Wood/physiology , Plant Transpiration/physiology , Models, Biological
7.
Mycorrhiza ; 34(3): 229-250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664239

ABSTRACT

Despite being the second largest family of flowering plants, orchids represent community structure variation in plant-microbial associations, contributes to niche partitioning in metacommunity assemblages. Yet, mycorrhizal communities and interactions remain unknown for orchids that are highly specialized or even obligated in their associations with their mycorrhizal partners. In this study, we sought to compare orchid mycorrhizal fungal (OMF) communities of three co-occurring hemiepiphytic Vanilla species (V. hartii, V. pompona, and V. trigonocarpa) in tropical forests of Costa Rica by addressing the identity of their OMF communities across species, root types, and populations, using high-throughput sequencing. Sequencing the nuclear ribosomal internal transcribed spacer (nrITS) yielded 299 fungal Operational Taxonomic Units (OTUs) from 193 root samples. We showed distinct segregation in the putative OMF (pOMF) communities of the three coexisting Vanilla hosts. We also found that mycorrhizal communities associated with the rare V. hartii varied among populations. Furthermore, we identified Tulasnellaceae and Ceratobasidiaceae as dominant pOMF families in terrestrial roots of the three Vanilla species. In contrast, the epiphytic roots were mainly dominated by OTUs belonging to the Atractiellales and Serendipitaceae. Furthermore, the pOMF communities differed significantly across populations of the widespread V. trigonocarpa and showed patterns of distance decay in similarity. This is the first report of different pOMF communities detected in roots of wild co-occurring Vanilla species using high-throughput sequencing, which provides evidence that three coexisting Vanilla species and their root types exhibited pOMF niche partitioning, and that the rare and widespread Vanilla hosts displayed diverse mycorrhizal preferences.


Subject(s)
Mycorrhizae , Orchidaceae , Plant Roots , Vanilla , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/physiology , Costa Rica , Orchidaceae/microbiology , Plant Roots/microbiology , Vanilla/microbiology , Mycobiome , Phylogeny
8.
J Anim Ecol ; 93(5): 606-618, 2024 05.
Article in English | MEDLINE | ID: mdl-38414265

ABSTRACT

Human-induced species declines and extinctions have led to the downsizing of large-herbivore assemblages, with implications for many ecosystem processes. Active reintroduction of extirpated large herbivores or their functional equivalents may help to reverse this trend and restore diverse ecosystems and their processes. However, it is unclear whether resource competition between native and non-native herbivores could threaten restoration initiatives, or to what extent (re)introduced species may influence local vegetation dynamics. To answer these questions, we investigated the diets of a novel South American herbivore assemblage that includes resident native species, reintroduced native species and introduced non-native species. We examined plant composition, diet breadth and the overlap between species to describe the local herbivory profile and the potential for resource competition. Using DNA metabarcoding on faecal samples (n = 465), we analysed the diets of the herbivore assemblage in the Rincón del Socorro rewilding area of Iberá National Park, Argentina. We compared the species richness of faecal samples, the occurrence of plant families/growth forms and the compositional similarity of samples (inter- and intraspecifically). Our results indicate species-level taxonomic partitioning of plant resources by herbivores in this system. Differences in sample richness, composition and diet breadth reflected a diverse range of herbivory strategies, from grazers (capybara) to mixed feeders/browsers (brocket deer, lowland tapir). Differences in diet compositional similarity (Jaccard) revealed strong taxonomic resource partitioning. The two herbivores with the most similar diets (Pampas deer and brocket deer) still differed by more than 80%. Furthermore, all but one species (axis deer) had more similar diet composition intraspecifically than compared to the others. Overall, we found little evidence for resource competition between herbivore species. Instead, recently reintroduced native species and historically introduced non-natives are likely expanding the range of herbivory dynamics in the ecosystem. Further research will be needed to determine the full ecological impacts of these (re)introduced herbivores. In conclusion, we show clear differences in diet breadth and composition among native, reintroduced and non-native herbivore species that may be key to promoting resource partitioning, species coexistence and the restoration of ecological function.


La disminución y extinción de especies ocasionada por el hombre ha llevado a la reducción de tamaño de las comunidades de grandes herbívoros, con implicaciones para muchos procesos ecosistémicos. La reintroducción activa de grandes herbívoros extirpados, o sus equivalentes funcionales, puede ayudar a revertir esta tendencia y restaurar diversos ecosistemas y sus procesos. Sin embargo, no está claro si la competencia por recursos entre herbívoros nativos y no nativos podría amenazar las iniciativas de restauración, o en qué medida las especies (re)introducidas pueden influir la dinámica de la vegetación local. Para responder a estas preguntas, investigamos las dietas de una comunidad de herbívoros sudamericanos que incluye especies nativas, especies nativas reintroducidas y especies no nativas introducidas. Examinamos la composición de plantas, la amplitud de la dieta y la superposición entre especies para describir el perfil herbívoro local y el potencial de competencia por los recursos. Utilizando metabarcoding de ADN en muestras fecales (n = 465), analizamos las dietas de la comunidad de herbívoros en el sitio de rewilding Rincón del Socorro dentro del Parque Nacional Iberá, Argentina. Comparamos la riqueza de especies en las muestras fecales, la ocurrencia de familias de plantas/formas de crecimiento y la similitud en la composición de las muestras (interespecíficamente e intraespecíficamente). Nuestros resultados indican la partición taxonómica a nivel de especie de los recursos vegetales por parte de los herbívoros en este sistema. Las diferencias en la riqueza de las muestras, la composición y la amplitud de las dietas reflejaron una amplia gama de estrategias de herbivoría, desde pastoreadores (capibara) hasta herbívoros mixtos/ramoneadores (corzuela, tapir amazónico). Las diferencias en la similitud de la composición de la dieta (Jaccard) revelaron una fuerte partición taxonómica de los recursos. Los dos herbívoros con las dietas más similares (venado de las pampas y corzuela), aún así diferían en más del 80%. Además, todas las especies menos una (ciervo axis) tenían una composición dietética más similar intraespecíficamente que en comparación con las demás. En general, encontramos poca evidencia de competencia por recursos entre las especies de herbívoros. En cambio, las especies nativas reintroducidas recientemente y las no nativas introducidas históricamente probablemente estén ampliando el rango de dinámica de herbivoría en el ecosistema. Se necesitarán más investigaciones para determinar todos los impactos ecológicos de estos herbívoros (re)introducidos. En conclusión, mostramos diferencias claras en la amplitud y composición de la dieta entre especies de herbívoros nativas, reintroducidas y no nativas que pueden ser clave para promover la partición de recursos, la coexistencia de especies y la restauración de las funciones ecológicas.


Subject(s)
Diet , Feces , Herbivory , Introduced Species , Animals , Argentina , Diet/veterinary , Plants
9.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399169

ABSTRACT

Advanced high-strength steels (AHSSs) are designed for meeting strict requirements, especially in the automotive industry, as a means to directly influence the reduction in the carbon footprint. As rotary friction welding (RFW) has many important advantages over other welding technologies, it plays an important role in the automotive sector. On the above basis, in this work, combinations of the first (complex phase (CP)), second (TWIP (TW)), and third (quenched and partitioned (Q&P)) generations of similar and dissimilar high-alloyed advanced steels have been joined by the RFW process. Having a specific microstructure, rods of CP/CP, Q&P/Q&P, CP/TW, and Q&P/TW steels were welded by employing a homemade adaptation machine under fixed parameters. Microstructural characterization has allowed us to corroborate the metallic bonding of all the tested advanced steels and to identify the different zones formed after welding. Results indicate that the welding zone widens in the center of the workpiece, and under the current friction action, the intermixing region shows the redistribution of solute elements, mostly in the dissimilarly welded steels. Furthermore, because of their complex chemistry and the different mechanical properties of the used steels, dissimilarly welded steels present the most noticeable differences in hardness. The TWIP steel has the lower hardness values, whilst the CP and Q&P steels have the higher ones. As a direct effect of the viscoplastic behavior of the steels established by the thermomechanical processing, interlayers and oxidation products were identified, as well as some typical RFW defects. The electrochemical response of the welded steels has shown that the compositional and microstructural condition mostly affect the corrosion trend. This means that the dissimilarly welded steels are more susceptible to corrosion, especially at the TWIP-steel interface, which is attributed to the energy that is stored in the distorted microstructure of each steel plate as a consequence of the thermomechanical processing during RFW.

10.
Am J Primatol ; 86(2): e23575, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37960991

ABSTRACT

Fruit availability experienced by different primate species is likely to vary due to species-specific fruit use, even within the same habitat and timeframe. Pitheciines, primates of the subfamily Pitheciinae, particularly favor the seeds of unripe fruits. Researchers consider this dietary characteristic an adaptation to increase access to fruit resources. However, the relative advantages of pitheciines over sympatric non-pitheciine non-seed-eating primates regarding species-specific fruit availability is not well studied. In a 26-ha forest within the city of Manaus, Amazonian Brazil, we assessed the wild-food feeding behavior of free-ranging groups of golden-faced sakis (Pithecia chrysocephala) and sympatric common squirrel monkeys (Saimiri sciureus). We hypothesized that sakis would have greater and more consistent access to wild fruit due to (1) a wider variety of fruit species in their diet, and (2) longer consumption periods per fruit species. We recorded the plant species, part (pulp or seed), and developmental stage (ripe or unripe) of wild fruit consumed by both species. We also conducted monthly fruit censuses of 1000 trees and vines to estimate overall wild fruit abundance. As an indicator of fruit availability, we calculated the proportion of available fruiting trees and vines for each primate species separately based on their observed diet. Throughout the year, the proportion of available trees and vines was significantly higher and more temporally stable for sakis than for squirrel monkeys. This was because sakis used shared fruit species longer than squirrel monkeys by consuming both ripe and unripe fruit. Although sakis had a broader fruit repertoire than squirrel monkeys, it did not contribute to the higher fruit availability. Thus, the fruit feeding system of sakis identifies aspects of a niche that is less restricted in the timing of fruit consumption, which led to a relative advantage in fruit availability.


Subject(s)
Fruit , Pitheciidae , Animals , Saimiri , Brazil , Forests , Feeding Behavior , Plants , Trees
11.
Prep Biochem Biotechnol ; 54(7): 910-917, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38156982

ABSTRACT

Proteases are the main enzymes traded worldwide-comprising 60% of the total enzyme market-and are fundamental to the degradation and processing of proteins and peptides. Due to their high commercial demand and biological importance, there is a search for alternative sources of these enzymes. Crotalaria stipularia is highlighted for its agroecological applications, including organic fertilizers, nematode combat, and revegetation of areas contaminated with toxic substances. Considering the pronounced biotechnological functionality of the studied species and the necessity to discover alternative sources of proteases, we investigated the extraction, purification, and characterization of a protease from seeds of the C. stipularia plant. Protease isolation was achieved by three-phase partitioning and single-step molecular exclusion chromatography in Sephacryl S-100, with a final recovery of 47% of tryptic activity. The molecular mass of the isolated enzyme was 40 kDa, demonstrating optimal activities at pH 8.0 and 50 °C. Enzymatic characterization demonstrated that the protease can hydrolyze the specific trypsin substrate, BApNA. This trypsin-like protease had a Km, Vmax, Kcat, and catalytic efficiency constant of 0.01775 mg/mL, 0.1082 mM/min, 3.86 s-1, and 217.46, respectively.


Subject(s)
Crotalaria , Seeds , Crotalaria/chemistry , Seeds/chemistry , Seeds/enzymology , Hydrogen-Ion Concentration , Trypsin/metabolism , Trypsin/chemistry , Kinetics , Substrate Specificity , Temperature , Molecular Weight
12.
J Mass Spectrom ; 59(1): e4997, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146219

ABSTRACT

Criminal practices in which an individual becomes vulnerable and prone to sexual assault after ingesting drinks spiked with doping substances have become a social concern globally. As forensic protocols require a multi-tiered strategy for chemical evidentiary analysis, the backlog of evidence has become a significant problem in the community. Herein, a fast, sensible, and complementary dual analytical methodology was developed using a single commercial paper substrate for surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) analysis to identify psychotropic substances added to alcoholic beverages irrefutably. To study and investigate this criminal practice, pharmaceutical formulations containing distinct psychotropic substances (zolpidem, clonazepam, diazepam, and ketamine) were added to drinks typically consumed at parties and festivals (Pilsen beer, açaí Catuaba®, gin tonic, and vodka mixed with Coca-Cola Zero®). A simple liquid-liquid extraction with a low-temperature partitioning (LLE-LTP) procedure was applied to the drinks and effectively minimized matrix effects. As a preliminary analysis, SERS spectra combined with Hierarchical Clustering Analysis (HCA) provided sufficient information to investigate the samples further. The presence of the protonated species for the psychotropic substances in the spiked drinks was readily verified in the mass spectra and confirmed by tandem mass spectrometry. Finally, the results demonstrate the potential of this methodology to be easily implemented into the routine of forensic laboratories and to be further employed at harm reduction tends at parties and festivals to detect contaminated beverages promptly and irrefutably as an efficient tool to prevent such crimes.


Subject(s)
Alcoholic Beverages , Spectrum Analysis, Raman , Alcoholic Beverages/analysis , Psychotropic Drugs/analysis , Tandem Mass Spectrometry/methods , Beverages/analysis
13.
Ecol Evol ; 13(11): e10781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034340

ABSTRACT

Water availability significantly influences bird and mammal ecology in terrestrial ecosystems. However, our understanding of the role of water as a limiting resource for birds and mammals remains partial because most of the studies have focused on surface water bodies in desert and semi-desert ecosystems. This study assessed the use of two types of surface water bodies (waterholes and epikarst rock pools) and one arboreal (water-filled tree holes) by birds and mammals in the seasonally dry tropical forests of the Calakmul Biosphere Reserve in southern Mexico. We deployed camera traps in 23 waterholes, 22 rock pools, and 19 water-filled tree holes in this karstic region to record visits by small, medium, and large-bodied birds and mammals during the dry and rainy seasons. These cameras were set up for recording videos documenting when animals were making use of water for drinking, bathing, or both. We compared the species diversity and composition of bird and mammal assemblages using the different types of water bodies by calculating Hill numbers and conducting nonmetric multidimensional scaling (NMDS), indicator species, and contingency table analyses. There was a greater species richness of birds and mammals using surface water bodies than tree holes during both seasons. There were significant differences in species composition among bird assemblages using the different water bodies, but dominant species and diversity remained the same. Terrestrial and larger mammalian species preferentially used surface water bodies, whereas arboreal and scansorial small and medium mammals were more common in arboreal water bodies. These findings suggest that differences in water body characteristics might favor segregation in mammal activity. The different water bodies may act as alternative water sources for birds and complementary sources for mammals, potentially favoring species coexistence and increasing community resilience to environmental variation (e.g., fluctuations in water availability). Understanding how differences in water bodies favor species coexistence and community resilience is of great relevance from a basic ecological perspective but is also crucial for anticipating the effects that the increased demand for water by humans and climate change can have on wildlife viability.

14.
Chemphyschem ; 24(24): e202300548, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37788220

ABSTRACT

Lipophilicity is a physicochemical property with wide relevance in drug design, computational biology, food, environmental and medicinal chemistry. Lipophilicity is commonly expressed as the partition coefficient for neutral molecules, whereas for molecules with ionizable groups, the distribution coefficient (D) at a given pH is used. The logDpH is usually predicted using a pH correction over the logPN using the pKa of ionizable molecules, while often ignoring the apparent ion pair partitioning ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ . In this work, we studied the impact of ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ on the prediction of both the experimental lipophilicity of small molecules and experimental lipophilicity-based applications and metrics such as lipophilic efficiency (LipE), distribution of spiked drugs in milk products, and pH-dependent partition of water contaminants in synthetic passive samples such as silicones. Our findings show that better predictions are obtained by considering the apparent ion pair partitioning. In this context, we developed machine learning algorithms to determine the cases that P I app ${P_{\rm{I}}^{{\rm{app}}} }$ should be considered. The results indicate that small, rigid, and unsaturated molecules with logPN close to zero, which present a significant proportion of ionic species in the aqueous phase, were better modeled using the apparent ion pair partitioning ( P IP app ) ${{\rm{(}}P_{{\rm{IP}}}^{{\rm{app}}} )}$ . Finally, our findings can serve as guidance to the scientific community working in early-stage drug design, food, and environmental chemistry.

15.
Front Plant Sci ; 14: 1233772, 2023.
Article in English | MEDLINE | ID: mdl-37828933

ABSTRACT

Nitrogen (N) is the most extracted and exported element by the soybean crop. In high yield tropical environments with irrigation, little is known about N accumulation in different soybean plant organs as well as the N balance. The objective of this study was to characterize soybean growth, N accumulation in plant organs, N balance, and N gap in a high yield tropical environment. This study was performed in a homogeneous field, in a soil with low organic matter, with 20 kg ha-1 of N, under furrow fertilization. Evaluations were performed ten times, temporally distributed from emergence to senescence. The soybean cultivar used was 'RK7518 IPRO' and was sown with row spacing of 0.45 m and a seeding rate of 300,000 plants ha-1. Plant N partition, N from the biological N fixation (BNF), grain yield, crop harvest index (HI), N harvest index (NHI) with and without root contribution were evaluated. Also, at the grain filling stage the N gap was evaluated from the soil by difference between whole plant accumulated N and the amount of N from BNF. The average grain yield was 6,470 kg ha-1 and leads to a negative partial balance of N of -33.4 and -42.8 kg[N] ha-1 with and without roots, respectively. The N gap from the soil was 231.7 kg[N] ha-1. It is recommended to adopt techniques that increase the efficiency of BNF and the soil N accumulation to balance these production systems in the medium to long term.

16.
Prep Biochem Biotechnol ; : 1-13, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37814816

ABSTRACT

Collagenolytic proteases produced by Aspergillus heteromorphus URM0269 were extracted using a PEG/sulfate aqueous two-phase system (ATPS). A 23 factorial design was performed to analyze the independent variables: PEG molar mass (MPEG), PEG concentration (CPEG), and sulfate concentration (Csulf). The extracted proteases were also evaluated for their optimum pH and stability at different pH levels (4.0 - 11.0) after 20 h of incubation. Collagen was extracted from mutton snapper (Lutjanus analis) skin using acetic acid (0.5 mol L-1). The enzyme was preferentially partitioned to the PEG-rich phase (K > 1), whose highest purification factor and recovery (PF = 6.256 and Y = 404.432%) were obtained under specific conditions: MPEG 8000 g.mol-1, CPEG 30%, Csulf 10%. The ATPS extraction provided an enzymatic activity range of pH 7.0 - 11.0, exhibiting greater stability compared to the crude extract. Approximately 80% of protease activity was maintained after 20 hours of incubation at all analyzed pH levels, except pH 11.0. Collagen extraction from L. analis skin yielded 8.056%, and both crude extract samples and ATPS-derived samples successfully hydrolyzed the extracted collagen, reaching peak hydrolysis after 36 hours of treatment. These findings demonstrate the feasibility of extracting highly purified and active proteases capable of hydrolyzing L. analis collagen.

17.
PeerJ ; 11: e16117, 2023.
Article in English | MEDLINE | ID: mdl-37753172

ABSTRACT

The competitive exclusion principle establishes that the coexistence of closely related species requires a certain degree of resource partitioning. However, populations have individuals with different morphological or behavioral traits (e.g., maturity stages, sexes, temporal or spatial segregation). This interaction often results in a multi-level differentiation in food preferences and habits. We explored such resource partitioning between and within three batoid species: Hypanus dipterurus, Narcine entemedor, and Rhinoptera steindachneri in the southern Gulf of California, Mexico, using a combination of stomach content (excluding R. steindachneri) and stable isotope analyses. We found a clear differentiation between H. dipterurus and N. entemedor, where the latter exhibited more benthic habitats, supported by a greater association to infaunal prey and higher δ13C values. Though the degree and patterns of intra-specific segregation varied among species, there was a notable differentiation in both sex and stage of maturity, corresponding to changes in specialization (i.e., isotopic niche breadth) or trophic spectrum (varying prey importance and isotopic values per group). This work is a promising step towards understanding the dietary niche dynamics of these species in a potentially important feeding area within the southern Gulf of California, as well as the biological and ecological mechanisms that facilitate their coexistence.


Subject(s)
Geraniaceae , Nutrition Assessment , Humans , California , Nutritional Status , Food Preferences
18.
Front Plant Sci ; 14: 1235923, 2023.
Article in English | MEDLINE | ID: mdl-37600198

ABSTRACT

Introduction: The use of drought tolerant genotypes is one of the main strategies proposed for coping with the negative effects of global warming in dry lands. Trichloris crinita is a native forage grass occupying extensive arid and semi-arid regions in the American continent, and used for range grazing and revegetation of degraded lands. Methods: To identify drought-tolerant genotypes and possible underlying physiological mechanisms, this study investigated drought tolerance in 21 genetically diverse T. crinita genotypes under natural field conditions. The accessions were grown under irrigated (control) and drought conditions for 84 days after initiation of the drought treatment (DAIDT), which coincided with flowering initiation. Various morpho-physiological traits were monitored, including total-, foliage-, and root biomass yield, dry matter partitioning to individual plant organs (roots, leaves, stems, and panicles), total leaf area, chlorophyll content, photochemical efficiency of photosystem II, stomatal conductance, and number of panicles per plant. Results and discussion: Broad and significant variation (p<0.001) was found among the accessions for all the traits. Three highly tolerant and three very sensitive accessions were identified as the most contrasting materials, and their responses to drought stress were confirmed over two years of experiments. Under prolonged drought conditions (84 DAIDT), the tolerant accessions were generally more productive than the rest for all the biomass yield components analyzed, and this was associated with a postponed and more attenuated decrease in variables related to the plant photosynthetic activity, such as stomatal conductance, chlorophyll content, and photochemical efficiency. In contrast to previous findings, our data indicate no direct relationship between drought tolerance and the level of aridity in the accessions natural habitats, but rather suggest genetic heterogeneity and ample variation for drought tolerance in T. crinita natural populations derived from a particular location or environment. Also, having low total and forageable biomass yield, or increased biomass allocation to the roots (i.e., lower foliage/root ratio), under optimal water availability, were not associated with greater drought tolerance. The drought-tolerant accessions identified are of value for future genetic research and breeding programs, and as forage for range grazing and revegetation in arid regions.

19.
J Environ Sci Health B ; 58(7): 530-538, 2023.
Article in English | MEDLINE | ID: mdl-37465866

ABSTRACT

Cresols and chlorophenols are chemical contaminants that are potentially toxic to humans and can be found in sewage sludge. These chemical contaminants can migrate into the sludge-soil-water system when sludge is used as a conditioner for agricultural soils. Thus, the objective of this study was to develop methodologies based on extraction with low-temperature partitioning (LTP) to determine cresols and chlorophenols in sewage sludge, soil, and water. The analysis was performed by gas chromatography coupled with mass spectrometry (GC-MS). The validated methods were applied to monitor cresols and chlorophenols in a column-leaching study of a sludge-soil-water system. Satisfactory results were achieved for selectivity, limit of quantification (LOQ), linearity, accuracy, and precision. In the column leaching study, only 2,4,6-trichlorophenol was quantified in sludge samples after 20 days of the experiment. None of the studied compounds were quantified in soil and leached water samples, due to the degradation promoted by the microorganisms present in the sewage sludge. Finally, validated methods were suitable for monitoring cresols and chlorophenols in the sludge-soil-water system.


Subject(s)
Chlorophenols , Soil Pollutants , Humans , Sewage/analysis , Cresols/analysis , Soil/chemistry , Chlorophenols/analysis , Temperature , Soil Pollutants/analysis
20.
ACS Sens ; 8(8): 3076-3085, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37477354

ABSTRACT

Lipid droplets (LDs) are intracellular organelles found in most cell types from adipocytes to cancer cells. Although recent investigations have implicated LDs in numerous diseases, the current available methods to monitor them in vertebrate models rely on static imaging using fluorescent dyes, limiting the investigation of their rapid in vivo dynamics. Here, we report a fluorophore chemistry approach to enable in vivo LD dynamic monitoring using a Nernstian partitioning mechanism. Interestingly, the effect of atorvastatin and osmotic treatments toward LDs revealed an unprecedented dynamic enhancement. Then, using a designed molecular probe with an optimized response to hydration and LD dynamics applied to Zebrafish developing pericardial and yolk-sac edema, which represents a tractable model of a human cardiovascular disease, we also provide a unique dual method to detect disease evolution and recovery.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Animals , Humans , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Fluorescent Dyes/chemistry , Zebrafish , Permeability , Edema/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL