Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39044680

ABSTRACT

Objectives of this experiment were to characterize the effects of ram plane of nutrition on body composition, concentrations of hormones and metabolites, sperm characteristics, and offspring outcomes. Mature Rambouillet rams (n = 24, BW = 82.9 ±â€…2.63 kg) were individually housed and randomly assigned to either a positive (POS; n = 8), maintenance (MAINT; n = 8), or negative (NEG; n = 8) plane of nutrition for an 84-day feeding period. Rams were fed a common diet, with daily feed allocations adjusted weekly based on body weight (BW) to achieve the targeted weight gain or loss (approximately 12% of initial BW). On 0, 28, 56, and 84-d, body condition score (BCS) and scrotal circumference (SC) were recorded, and blood and semen were collected. Following the feeding period, rams were placed in pens with 10 ewes each for a 28-d breeding period. Ewes were managed similarly throughout gestation and body weight and measurements were recorded at birth and weaning. Data were analyzed as repeated measures in time where appropriate with the mixed procedure of SAS, and individual ram was the experimental unit for all analysis. Ram BW was influenced by a treatment × day interaction (P < 0.001), with POS (0.12 ±â€…0.01 kg) having greater daily weight change than MAINT (0.1 ±â€…0.01 kg), which was greater than NEG (-0.12 ±â€…0.01 kg). Ram BCS and SC were influenced by treatment × day interactions (P ≤ 0.01), being similar on day 0 but POS being greater than NEG by day 56. Concentrations of triiodothyronine (T3) and T3:T4 ratio exhibited treatment × day interactions (P ≤ 0.02), as POS had greater values than NEG by day 84 (P ≤ 0.02). Concentration of insulin-like growth factor-1 was greater in POS than MAINT and NEG (P ≤ 0.02), and non-esterified fatty acids and thyroxine (T4) were influenced by a day effect (P ≤ 0.01), but testosterone was unaffected (P ≥ 0.09). Minimal differences in semen volume, sperm concentration, motility, or morphology were observed among treatments (P ≥ 0.31). A similar proportion of ewes bred by rams in the respective treatments lambed and weaned lambs (P ≥ 0.54). Birth weight, chest circumference, and shoulder-hip length were greater (P ≤ 0.05) in NEG lambs compared with POS and MAINT; however, no differences were detected in weaning weight and weaning body measurements (P ≥ 0.40). Findings suggest paternal nutrition during the period of sperm development may influence offspring outcomes, potentially as a result of in-utero programming of paternal origin.


This study was conducted to evaluate whether ram nutrition during the spermatogenesis impacts their body composition, concentrations of circulating hormones and metabolites, semen characteristics, fertility, and subsequent offspring growth and development. Rams were managed on treatments to gain, lose, or maintain body weight over an 84-day period. The changes in ram body weight that were imposed by our treatments resulted in changes in body condition score, scrotal circumference, and concentrations of several metabolic hormones, including thyroid hormones and insulin-like growth factor-1. However, no differences in sperm concentration or motility were observed. After the 84-d feeding period, rams were placed with ewes for a 28-d breeding period and ewes were monitored throughout gestation, lambing, and until weaning of the resulting lambs. Although no differences in ewe pregnancy rates were observed after the breeding period, lamb birth weight and body measurements were greater in rams that lost weight during spermatogenesis. Thereafter, body weight and growth performance of offspring were similar among sire treatments, but continued evaluation of offspring throughout the postnatal period is necessary. These findings indicate that paternal nutrition during spermatogenesis can impact offspring outcomes, potentially through epigenetic alterations to the sperm and subsequent in-utero programming of paternal origin.


Subject(s)
Animal Nutritional Physiological Phenomena , Body Composition , Diet , Animals , Male , Female , Sheep/physiology , Sheep/growth & development , Diet/veterinary , Animal Feed/analysis , Semen/physiology , Semen/chemistry , Pregnancy , Random Allocation , Semen Analysis/veterinary , Birth Weight , Body Weight
2.
Biol Reprod ; 111(2): 242-268, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38696371

ABSTRACT

The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.


Subject(s)
Microbiota , Semen , Male , Humans , Animals , Semen/microbiology , Microbiota/physiology , Female , Epigenesis, Genetic , Paternal Inheritance
3.
Arch Toxicol ; 98(6): 1685-1703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460001

ABSTRACT

That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.


Subject(s)
Epigenesis, Genetic , Phenotype , Humans , Animals , Male , DNA Methylation , Spermatozoa , Paternal Exposure/adverse effects , Paternal Inheritance , Female , RNA, Untranslated/genetics
4.
Anim Reprod ; 20(2): e20230076, 2023.
Article in English | MEDLINE | ID: mdl-37700908

ABSTRACT

Paternal programming is the concept that the environmental signals from the sire's experiences leading up to mating can alter semen and ultimately affect the phenotype of resulting offspring. Potential mechanisms carrying the paternal effects to offspring can be associated with epigenetic signatures (DNA methylation, histone modification and non-coding RNAs), oxidative stress, cytokines, and the seminal microbiome. Several opportunities exist for sperm/semen to be influenced during development; these opportunities are within the testicle, the epididymis, or accessory sex glands. Epigenetic signatures of sperm can be impacted during the pre-natal and pre-pubertal periods, during sexual maturity and with advancing sire age. Sperm are susceptible to alterations as dictated by their developmental stage at the time of the perturbation, and sperm and seminal plasma likely have both dependent and independent effects on offspring. Research using rodent models has revealed that many factors including over/under nutrition, dietary fat, protein, and ingredient composition (e.g., macro- or micronutrients), stress, exercise, and exposure to drugs, alcohol, and endocrine disruptors all elicit paternal programming responses that are evident in offspring phenotype. Research using livestock species has also revealed that sire age, fertility level, plane of nutrition, and heat stress can induce alterations in the epigenetic, oxidative stress, cytokine, and microbiome profiles of sperm and/or seminal plasma. In addition, recent findings in pigs, sheep, and cattle have indicated programming effects in blastocysts post-fertilization with some continuing into post-natal life of the offspring. Our research group is focused on understanding the effects of common management scenarios of plane of nutrition and growth rates in bulls and rams on mechanisms resulting in paternal programming and subsequent offspring outcomes. Understanding the implication of paternal programming is imperative as short-term feeding and management decisions have the potential to impact productivity and profitability of our herds for generations to come.

5.
Chemosphere ; 314: 137691, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592828

ABSTRACT

Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 µg/kg/day (BPS-4 sires) or 40 µg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.


Subject(s)
Insulin Resistance , Prenatal Exposure Delayed Effects , Humans , Rats , Male , Female , Animals , Rats, Wistar , Maternal Exposure , Paternal Exposure/adverse effects , Glucose/metabolism , Benzhydryl Compounds/toxicity , Prenatal Exposure Delayed Effects/chemically induced
6.
Front Physiol ; 14: 1306178, 2023.
Article in English | MEDLINE | ID: mdl-38169827

ABSTRACT

Background: Preclinical animal studies and clinical studies indicate that both maternal as well as paternal genetic alterations/gene defects might affect the phenotype of the next-generation without transmissions of the affected gene. Currently, the question of whether the same genetic defect present in the mother or father leads to a similar phenotype in the offspring remains insufficiently elucidated. Methods: In this head-to-head study, we crossbred female and male mice with heterozygous endothelial eNOS knockout (eNOS+/-) with male and female wild-type (wt) mice, respectively. Subsequently, we compared the phenotype of the resulting wt offspring with that of wt offspring born to parents with no eNOS deficiency. Results: Wt female offspring of mothers with heterozygous eNOS showed elevated liver fat accumulation, while wt male offspring of fathers with heterozygous eNOS exhibited increased fasting insulin, heightened insulin levels after a glucose load, and elevated liver glycogen content. By quantitative mass-spectrometry it was shown that concentrations of six serum metabolites (lysoPhosphatidylcholine acyl C20:3, phosphatidylcholine diacyl C36:2, phosphatidylcholine diacyl C38:1, phosphatidylcholine acyl-alkyl C34:1, phosphatidylcholine acyl-alkyl C36:3, and phosphatidylcholine acyl-alkyl C42:5 (PC ae C42:5) as well as four liver carbon metabolites (fructose 6-phosphate, fructose 1,6-bisphosphate, glucose 6-phosphate and fumarate) were different between wt offspring with eNOS+/- mothers and wt offspring with eNOS+/- fathers. Importantly, fumarate was inversely correlated with the liver fat accumulation in female offspring with eNOS+/- mothers and increased liver glycogen in offspring of both sexes with eNOS+/- fathers. The qRT-PCR results revealed that the gene expression patterns were different between wt offspring with eNOS+/- mothers and those offspring with eNOS+/- fathers. Different gene expression patterns were correlated with different observed phenotypic changes in male/female offspring born to mothers or fathers with a heterozygous eNOS genotype. Conclusion: The identical parental genetic alteration (heterozygous eNOS deficiency), without being passed on to the offspring, results in distinct metabolic, liver phenotype, and gene expression pattern variations depending on whether the genetic alteration originated from the father or the mother.

7.
Diabetologia ; 65(7): 1222-1236, 2022 07.
Article in English | MEDLINE | ID: mdl-35488925

ABSTRACT

AIMS/HYPOTHESIS: It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the offspring's phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS deficiency. METHODS: Heterozygous (+/-) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice. The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type parents. RESULTS: Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose and liver glycogen storage were increased when analysing wild-type male and female offspring of +/- eNOS fathers. Wild-type male but not female offspring of +/- eNOS fathers had increased fasting insulin and increased insulin after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/- eNOS fathers. The endocrine pancreas in wild-type offspring was not affected. CONCLUSIONS/INTERPRETATION: Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/- eNOS fathers developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and Pgc1a gene expression due to altered methylation of these genes.


Subject(s)
Glucose , Liver Glycogen , Nitric Oxide Synthase Type III , Animals , Female , Glucose/metabolism , Homeostasis , Insulin/metabolism , Liver Glycogen/metabolism , Male , Mice , Mice, Knockout , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism
8.
FASEB J ; 36(4): e22259, 2022 04.
Article in English | MEDLINE | ID: mdl-35294083

ABSTRACT

Effects of feeding male rats during spermatogenesis a high-fat, high-sucrose and high-salt diet (HFSSD) over two generations (F0 and F1) on renal outcomes are unknown. Male F0 and F1 rats were fed either control diet (F0CD+F1CD) or HFSSD (F0HD+F1HD). The outcomes were glomerular filtration rate and urinary albumin excretion in F1 and F2 offspring. If both outcomes were altered a morphological and molecular assessment was done. F2 offspring of both sexes had a decreased GFR. However, increased urinary albumin excretion was only observed in female F2 F0HD+F1HD offspring compared with controls. F0HD+F1HD female F2 offspring developed glomerulosclerosis (+31%; p < .01) and increased renal interstitial fibrosis (+52%; p < .05). RNA sequencing followed by qRT-PCR validation showed that four genes (Enpp6, Tmem144, Cd300lf, and Actr3b) were differentially regulated in the kidneys of female F2 offspring. lncRNA XR-146683.1 expression decreased in female F0HD+F1HD F2 offspring and its expression was (r = 0.44, p = .027) correlated with the expression of Tmem144. Methylation of CpG islands in the promoter region of the Cd300lf gene was increased (p = .001) in female F2 F0HD+F1HD offspring compared to controls. Promoter CpG island methylation rate of Cd300lf was inversely correlated with Cd300lf mRNA expression in F2 female offspring (r = -0.483, p = .012). Cd300lf mRNA expression was inversely correlated with the urinary albumin-to-creatinine ratio in female F2 offspring (r = -0.588, p = .005). Paternal pre-conceptional unhealthy diet given for two generations predispose female F2 offspring to chronic kidney disease due to epigenetic alterations of renal gene expression. Particularly, Cd300lf gene promotor methylation was inversely associated with Cd300lf mRNA expression and Cd300lf mRNA expression itself was inversely associated with urinary albumin excretion in F2 female offspring whose fathers and grandfathers got a pre-conceptional unhealthy diet.


Subject(s)
Prenatal Exposure Delayed Effects , Renal Insufficiency, Chronic , Albumins , Animals , Diet , Diet, High-Fat/adverse effects , Female , Humans , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , RNA, Messenger , Rats , Sodium Chloride , Sodium Chloride, Dietary , Spermatogenesis , Sucrose/adverse effects
9.
Life Sci ; 295: 120377, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35131235

ABSTRACT

AIMS: We evaluated the role of intergenerational paternal exercise on fibrosis, inflammatory profile, and redox status in the adipose tissue of male rat offspring fed with high-fat diet (HFD) and explored to what extent programming affects the systemic metabolic profile. MAIN METHODS: Adult wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks of resistance training (RT), three times per week). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (7 animals per group): offspring of sedentary fathers exposed to either a control diet (SFO-C) or a high-fat diet (SFO-HF); offspring of trained fathers exposed to a control diet (TFO-C) or a high-fat diet (TFO-HF). KEY FINDINGS: Paternal RT was effective in attenuating body weight gain, adipocyte size, collagen deposition, as well as downregulating genes (CTGF, VEGF, C/EBPα SREBP1, MCP-1, and NF-kB), pro-inflammatory cytokine levels (Tumor Necrosis Factor alpha and Interleukin-1-beta), matrix metalloproteinase -2 activity, and ROS production in the epididymal adipose tissue of offspring fed with HFD (TFO-HF vs. SFO-HF; P < 0.05). Moreover, paternal RT increased adiponectin and superoxide dismutase (SOD) activity in the tissue. These beneficial effects were accompanied by the increase of antioxidant enzymes (SOD and α-Klotho), while decreasing pro-oxidant agents (F2-isoprostanes, protein carbonyls levels), and metabolic markers (insulin and leptin, HOMA-ß, and HOMA-IR) in the offspring blood circulation. SIGNIFICANCE: Our findings reveal protective effects of intergenerational paternal RT on adipose tissue remodeling and metabolic health of offspring fed with HFD.


Subject(s)
Adipose Tissue/physiology , Fibrosis/physiopathology , Paternal Inheritance/physiology , Animals , Body Weight , Cytokines/metabolism , Diet, High-Fat , Fathers , Fibrosis/prevention & control , Insulin/metabolism , Interleukin-1beta/metabolism , Male , Obesity/metabolism , Oxidation-Reduction , Paternal Exposure , Physical Conditioning, Animal/methods , Rats , Rats, Wistar , Reactive Oxygen Species , Resistance Training , Weight Gain
10.
Front Nutr ; 9: 1043876, 2022.
Article in English | MEDLINE | ID: mdl-36618698

ABSTRACT

Background: This study determined the effects of the paternal dietary ratio of n-6: n-3 polyunsaturated fatty acids (PUFAs) on leptin expression in the offspring and associated gene imprinting in a mouse model. Methods: Three- to four-week-old male C57BL/6J mice (F0) were fed an n-3 PUFA-deficient (n-3 D) diet, a diet with normal n-3 PUFA content (n-3 N; n-6: n-3 = 4.3:1), or a diet with a high n-3 PUFA content (n-3 H; n-6: n-3 = 1.5:1) for 8 weeks. Two subsequent generations were generated by mating F0 and F1 male mice with 10-week-old virgin female C57 BL/6J mice, to produce F1 and F2 offspring. Results: Compared to the paternal n-3 D diet, paternal n-3 N and n-3 H diets reduced adipose mRNA expression of leptin (Lep) and its plasma concentrations in juvenile F1 male and female offspring, and adult F1 male and F2 female offspring, with upregulated Lep receptor mRNA expression in the hypothalamus. Meanwhile, paternal n-3 N and n-3 H diets altered the expression of the imprinted genes H19, Igf2, Igf2r, Plagl1, Cdkn1c, Kcnq1ot1, Peg3, and Grb10 in the adipose tissue of juvenile and adult F1 males, with almost no effects on F1 females, while more effects were observed in the adult F2 females than F2 males. Principal component analysis verified that Plagl1, Cdkn1c, and Kcnq1ot1 contributed the most to variation in adipose tissue expression in all offspring. Some of these genes (Plagl1, Cdkn1c, Kcnq1ot1, Peg3, and Grb10) were altered by the paternal n-3 N and n-3 H diets in the F1 and F2 generation testes as well. Furthermore, adipose Lep expression was positively correlated with expressions of H19, Igf2r, Plagl1, and Kcnq1ot1 in juvenile F1 males and females, negatively correlated with the Kcnq1ot1 expression in adult F1 males, and positively correlated with the Plagl1 expression in adult F2 females. Conclusion: These data imply that paternal Plagl1, Cdkn1c, and Kcnq1ot1 might be part of the pathways involved in offspring leptin programming. Therefore, a lower ratio of n-6: n-3 PUFAs, with higher intake of n-3 PUFAs in paternal pre-conception, may help maintain the offspring's optimal leptin pattern in a sex-specific manner through multiple generations, and thereby, be beneficial for the offspring's long-term health.

11.
Biomolecules ; 11(5)2021 05 18.
Article in English | MEDLINE | ID: mdl-34069853

ABSTRACT

The impact of maternal nutrition on offspring is well documented. However, the implication of pre-conceptional paternal nutrition on the metabolic health of the progeny remains underexplored. Here, we investigated the impact of paternal high-protein diet (HPD, 43.2% protein) consumption on the endocrine pancreas and the metabolic phenotype of offspring. Male Wistar rats were given HPD or standard diet (SD, 18.9% protein) for two months. The progenies (F1) were studied at fetal stage and in adulthood. Body weight, glycemia, glucose tolerance (GT), glucose-induced insulin secretion in vivo (GIIS) and whole-body insulin sensitivity were assessed in male and female F1 offspring. Insulin sensitivity, GT and GIIS were similar between F1 females from HPD (HPD/F1) and SD fathers (SD/F1). Conversely, male HPD/F1 exhibited increased insulin sensitivity (p < 0.05) and decreased GIIS (p < 0.05) compared to male SD/F1. The improvement of insulin sensitivity in HPD/F1 was sustained even after 2 months of high-fat feeding. In male HPD/F1, the ß cell mass was preserved and the ß cell plasticity, following metabolic challenge, was enhanced compared to SD/F1. In conclusion, we provide the first evidence of a sex-specific impact of paternal HPD on the insulin sensitivity and GIIS of their descendants, demonstrating that changes in paternal nutrition alter the metabolic status of their progeny in adulthood.


Subject(s)
Diet, High-Protein/adverse effects , Insulin Resistance , Insulin-Secreting Cells/metabolism , Paternal Exposure/adverse effects , Animals , Body Weight , Case-Control Studies , Female , Insulin-Secreting Cells/drug effects , Male , Rats , Rats, Wistar , Sex Characteristics
12.
Nutrients ; 13(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801321

ABSTRACT

BACKGROUND: Consuming a diet high in prebiotic fiber has been associated with improved metabolic and gut microbial parameters intergenerationally, although studies have been limited to maternal intake with no studies examining this effect in a paternal model. METHOD: Male Sprague Dawley rats were allocated to either (1) control or (2) oligofructose-supplemented diet for nine weeks and then mated. Offspring consumed control diet until 16 weeks of age. Bodyweight, body composition, glycemia, hepatic triglycerides, gastrointestinal hormones, and gut microbiota composition were measured in fathers and offspring. RESULTS: Paternal energy intake was reduced, while satiety inducing peptide tyrosine tyrosine (PYY) gut hormone was increased in prebiotic versus control fathers. Increased serum PYY persisted in female prebiotic adult offspring. Hepatic triglycerides were decreased in prebiotic fathers with a similar trend (p = 0.07) seen in female offspring. Gut microbial composition showed significantly reduced alpha diversity in prebiotic fathers at 9 and 12 weeks of age (p < 0.001), as well as concurrent differences in beta diversity (p < 0.001), characterized by differences in Bifidobacteriaceae, Lactobacillaceae and Erysipelotrichaceae, and particularly Bifidobacterium animalis. Female prebiotic offspring had higher alpha diversity at 3 and 9 weeks of age (p < 0.002) and differences in beta diversity at 15 weeks of age (p = 0.04). Increases in Bacteroidetes in female offspring and Christensenellaceae in male offspring were seen at nine weeks of age. CONCLUSIONS: Although paternal prebiotic intake before conception improves metabolic and microbiota outcomes in fathers, effects on offspring were limited with increased serum satiety hormone levels and changes to only select gut bacteria.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Prebiotics , Animals , Female , Male , Rats , Blood Glucose , Body Composition/drug effects , Body Weight/drug effects , Fathers , Fatty Acids, Volatile , Gastrointestinal Hormones , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Homeostasis , Oligosaccharides/administration & dosage , Peptide YY , Rats, Sprague-Dawley , RNA, Ribosomal, 16S/genetics , Triglycerides
13.
Nutrition ; 86: 111168, 2021 06.
Article in English | MEDLINE | ID: mdl-33601122

ABSTRACT

OBJECTIVES: Parents' lifestyle and nutrition can program offspring obesity in adulthood. We hypothesized that maternal swimming has beneficial effects on the adversity caused by paternal obesity on offspring. METHODS: Twelve-week-old male C57 BL/6 J mice (fed a high-fat diet, obese father [ObFa], or control diet, lean father [LFa]) were mated with female mice fed only the control diet. Mothers were trained (TMo) or untrained (UMo): swimming for 6 wk before and the first 2 wk of gestation. Pups were fed only the control diet. RESULTS: Fathers showed different body mass (BM) at copulation, but not the mothers. The ObFa had 20% higher BM than the LFa. Twelve-week-old ObFa/UMo offspring showed a higher BM gain than the LFa/UMo and ObFa/TMo. There was BM sexual dimorphism in the LFa/UMo (female mice +24% than male mice). There was hyperglycemia and hyperinsulinemia in the ObFa/UMo, but low glycemia and insulin levels were seen in the ObFa/TMo. There was augmented liver steatosis in the ObFa/UMo compared with the LFa/UMo, and the ObFa/TMo compared with the LFa/TMo, but reduced steatosis in the ObFa/TMo compared with the ObFa/UMo. In addition, lipogenic markers were more expressed and beta-oxidation markers less expressed in the ObFa/UMo compared with the LFa/UMo, but the opposite was observed in the ObFa/TMo compared with the ObFa/UMo. Proinflammatory markers were higher in the liver of the ObFa/UMo compared with the LFa/UMo and lower in the ObFa/TMo compared with the ObFa/UMo. CONCLUSIONS: Obese fathers produced offspring that were overweight and had altered fasting glycemia and insulin sensitivity, leading to higher liver lipogenesis and inflammation, as well as lower beta-oxidation. The swimming mother mitigated these adverse effects in mice offspring.


Subject(s)
Fathers , Prenatal Exposure Delayed Effects , Adult , Animals , Diet, High-Fat/adverse effects , Female , Humans , Liver , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Pregnancy , Swimming
14.
Reprod Toxicol ; 100: 126-136, 2021 03.
Article in English | MEDLINE | ID: mdl-33513405

ABSTRACT

Benzo(a)pyrene (BaP) is an ubiquitous environmental pollutant which can lead to adverse effects on male reproduction. However, the persistence of these changes on a multigenerational scale has not been sufficiently explored. This study evaluated if peripubertal exposure to BaP in male rats can induce reproductive impairment in offspring. Male rats received BaP at environmentally relevant doses (0, 0.1, 1, or 10 µg/kg/day) orally from post-natal (PND) 23-53. On PND 90, treated males were mated with non-treated females for obtaining the next generation (F1). The paternal exposure to BaP decreased the body weight of offspring on PND 1, 13 and 22, as well as it provoked a reduction in the relative anogenital distance of the males. This exposure also brought forward the onset of puberty, evidenced by an earlier vaginal opening and first estrous in females of the lowest dose group and by a delay in the testicular descent and preputial separation ages in males. The males presented a decrease in the daily sperm production and a disrupted sperm morphology. Furthermore, the testicular histology was altered, evidenced by a reduction in the Leydig cell numbers and in the seminiferous tubules diameter, as well as a disrupted seminiferous tubules staging. The estrous cyclicity and some fertility parameters were changed in the females, as well as alterations in the ovary and uterus histology were observed. BaP compromised several reproductive parameters of the F1 generation, suggesting that peripubertal exposure to this compound provokes permanent modifications in male germ line of F0 generation.


Subject(s)
Benzo(a)pyrene/toxicity , Environmental Pollutants/toxicity , Paternal Exposure/adverse effects , Prenatal Exposure Delayed Effects , Reproduction/drug effects , Sexual Maturation/drug effects , Animals , Benzo(a)pyrene/administration & dosage , Body Weight/drug effects , Estrous Cycle/drug effects , Female , Fertility/drug effects , Genitalia/drug effects , Genitalia/growth & development , Male , Organ Size , Pregnancy , Rats , Rats, Wistar , Spermatozoa/drug effects
15.
Braz. arch. biol. technol ; 64: e21190123, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278446

ABSTRACT

Abstract This systematic review examined the effects of paternal exposure to a high-fat diet on the likelihood of offspring developing health consequences, including metabolic conditions. While the connection between a mother's diet and offspring health has been well established, our understanding of whether offspring health is affected by a father's diet remains limited. This systematic review was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) recommendations. The PubMed, Scopus, and Embase electronic databases were searched using combinations of the MESH terms: obesogenic diet, high-fat diet, cafeteria diet, paternal diet, parental diet, programming, paternal effects, and paternal programming. Sixteen studies were selected after assessing articles for eligibility criteria. The main outcomes concerning offspring health related to metabolic disorders. The offspring of fathers exposed to a high-fat diet displayed elevated gene expression and serum levels of leptin, decreased gene expression and serum levels of adiponectin, insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, changes in the transcriptome of pancreatic islet tissues, increased triglycerides, and increased expression of lipogenic genes. The available evidence suggests that paternal exposure to a high-fat diet may induce harmful effects on the health of offspring.


Subject(s)
Animals , Rats , Paternal Behavior , Dietary Fats/adverse effects , Paternal Exposure , Feeding Behavior
16.
Front Cell Dev Biol ; 8: 380, 2020.
Article in English | MEDLINE | ID: mdl-32656202

ABSTRACT

The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8-12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father's lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT.

17.
Nutrition ; 71: 110612, 2020 03.
Article in English | MEDLINE | ID: mdl-31785517

ABSTRACT

OBJECTIVES: The aim of this study was to observe the developmental origins of health and disease affecting offspring owing to the consumption of a diet containing high fructose by the father or mother or both, considering that progeny only received a control diet during postnatal life. METHODS: Male (future father) and female (future mother) C57 BL/6 mice were fed a high-fructose diet (HFru; 45% energy) or a control diet (C) for 8 wk before mating until lactation. The offspring was termed according to sex, maternal diet (first acrostic), and paternal diet (second acrostic); and received a balanced control diet until 3-mo of age when they were sacrificed. Body mass (BM), plasmatic leptin, adiponectin, uric acid, and systolic blood pressure (BP) were measured in mature offspring. RESULTS: Fasting glycemia and insulin were elevated in HFru fathers and mothers. Although there was no change in BM, fasting glycemia, or insulin of the offspring, those of HFru fathers, HFru mothers, and HFru fathers and mothers presented higher genital fat pad, leptin, uric acid, and BP, and lower adiponectin. The values of leptin and BP were maximized when both parents consumed a HFru diet. Also, there was sexual dimorphism in most of the variables, with the male offspring being affected to a greater extent than the females. CONCLUSIONS: Consumption of a fructose-rich diet by the father, the mother, or both negatively affected the adipokines, BP, and uric acid concentrations of mature offspring, with males being more affected than females. It is significant to consider that high BP and plasmatic uric acid correspond to markers of elevated cardiovascular risk in the progeny.


Subject(s)
Animal Nutritional Physiological Phenomena , Dietary Sugars/adverse effects , Fructose/adverse effects , Prenatal Exposure Delayed Effects/physiopathology , Sex Factors , Adiponectin/blood , Adipose Tissue/physiopathology , Animals , Blood Glucose/analysis , Blood Pressure , Fathers , Feeding Behavior , Female , Heart Disease Risk Factors , Insulin/blood , Leptin/blood , Male , Maternal Exposure , Maternal Nutritional Physiological Phenomena , Mice , Mice, Inbred C57BL , Mothers , Paternal Exposure , Pregnancy , Uric Acid/blood
18.
Breast Cancer Res ; 20(1): 99, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30165877

ABSTRACT

BACKGROUND: While many studies have shown that maternal factors in pregnancy affect the cancer risk for offspring, few studies have investigated the impact of paternal exposures on their progeny's risk of this disease. Population studies generally show a U-shaped association between birthweight and breast cancer risk, with both high and low birthweight increasing the risk compared with average birthweight. Here, we investigated whether paternal malnutrition would modulate the birthweight and later breast cancer risk of daughters. METHODS: Male mice were fed AIN93G-based diets containing either 17.7% (control) or 8.9% (low-protein (LP)) energy from protein from 3 to 10 weeks of age. Males on either group were mated to females raised on a control diet. Female offspring from control and LP fathers were treated with 7,12-dimethylbenz[a]anthracene (DMBA) to initiate mammary carcinogenesis. Mature sperm from fathers and mammary tissue and tumors from female offspring were used for epigenetic and other molecular analyses. RESULTS: We found that paternal malnutrition reduces the birthweight of daughters and leads to epigenetic and metabolic reprogramming of their mammary tissue and tumors. Daughters of LP fathers have higher rates of mammary cancer, with tumors arising earlier and growing faster than in controls. The energy sensor, the AMP-activated protein kinase (AMPK) pathway, is suppressed in both mammary glands and tumors of LP daughters, with consequent activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, LP mammary tumors show altered amino-acid metabolism with increased glutamine utilization. These changes are linked to alterations in noncoding RNAs regulating those pathways in mammary glands and tumors. Importantly, we detect alterations in some of the same microRNAs/target genes found in our animal model in breast tumors of women from populations where low birthweight is prevalent. CONCLUSIONS: Our study suggests that ancestral paternal malnutrition plays a role in programming offspring cancer risk and phenotype by likely providing a metabolic advantage to cancer cells.


Subject(s)
Birth Weight , Cell Transformation, Neoplastic/metabolism , Malnutrition/metabolism , Mammary Neoplasms, Experimental/epidemiology , Paternal Exposure/adverse effects , Animals , Animals, Newborn , Anthracenes/toxicity , Cell Transformation, Neoplastic/genetics , Diet, Protein-Restricted/adverse effects , Female , Gene Expression Regulation, Neoplastic , Humans , Incidence , Male , Malnutrition/etiology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Piperidines/toxicity , Pregnancy , Risk Assessment
19.
Diabetologia ; 61(8): 1862-1876, 2018 08.
Article in English | MEDLINE | ID: mdl-29777263

ABSTRACT

AIMS/HYPOTHESIS: Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy. METHODS: Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy. RESULTS: Male, but not female offspring of HFSSD-fed founders were heavier than those of control-diet-fed counterparts (p < 0.05 and p = 0.066 in males and females, respectively). Both male and female offspring of HFSSD-fed founders were longer compared with control (p < 0.01 for both sexes). Folate treatment of the pregnant dams abolished the effect of the paternal diet on the offspring's body length (p Ë‚ 0.05). Female offspring of HFSSD-fed founders developed impaired glucose tolerance, which was restored by folate treatment of the dams during pregnancy. The beta cell density per pancreatic islet was decreased in offspring of HFSSD-fed rats (-20% in male and -15% in female F1 offspring, p Ë‚ 0.001 vs controls). Folate treatment significantly increased the beta cell density (4.3% and 3.3% after folate supplementation given to dams and founders, respectively, p Ë‚ 0.05 vs the offspring of HFSSD-fed male rats). Changes in liver connective tissue of female offspring of HFSSD-fed founders were ameliorated by treatment of dams with folate (p Ë‚ 0.01). Hepatic Ppara gene expression was upregulated in female offspring only (1.51-fold, p Ë‚ 0.05) and was restored in the female offspring by folate treatment (p Ë‚ 0.05). We observed an increase in hepatic Lcn2 and Tmcc2 expression in female offspring born to male rats exposed to an unhealthy diet during spermatogenesis before mating (p Ë‚ 0.05 vs controls). Folate treatment of the corresponding dams during pregnancy abolished this effect (p Ë‚ 0.05). Analysis of DNA methylation levels of CpG islands in the Ppara, Lcn2 and Tmcc2 promoter regions revealed that the paternal unhealthy diet induced alterations in the methylation pattern. These patterns were also affected by folate treatment. Total liver DNA methylation was increased by 1.52-fold in female offspring born to male rats on an unhealthy diet prior to mating (p Ë‚ 0.05). This effect was abolished by folate treatment during pregnancy (p Ë‚ 0.05 vs the offspring of HFSSD-fed male rats). CONCLUSIONS/INTERPRETATION: Folate treatment of pregnant dams restores effects on female offspring's glucose metabolism induced by pre-conception male founder HFSSD.


Subject(s)
Animal Nutritional Physiological Phenomena , Diet, High-Fat/adverse effects , Folic Acid/therapeutic use , Pregnancy, Animal , Animal Feed , Animals , DNA Methylation , Female , Gene Expression Profiling , Glucose Tolerance Test , Liver/embryology , Liver/metabolism , Male , Pancreas/metabolism , Pregnancy , RNA/analysis , Rats , Rats, Sprague-Dawley , Sodium Chloride/chemistry , Spermatogenesis , Sucrose/chemistry , Triglycerides/metabolism , Up-Regulation
20.
Methods Mol Biol ; 1735: 91-103, 2018.
Article in English | MEDLINE | ID: mdl-29380308

ABSTRACT

The developmental origins of breast cancer have been considered predominantly from a maternal perspective. Although accumulating evidence suggests a paternal programming effect on metabolic diseases, the potential impact of fathers' experiences on their daughters' breast cancer risk has received less attention. In this chapter, we focus on the developmental origins of breast cancer and examine the emerging evidence for a role of fathers' experiences.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Disease Susceptibility , Animals , Breast Neoplasms/pathology , Chronic Disease , Female , Humans , Lactation , Maternal Exposure , Paternal Inheritance , Pregnancy , Prenatal Exposure Delayed Effects
SELECTION OF CITATIONS
SEARCH DETAIL