Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 948: 174912, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038682

ABSTRACT

Climate change, particularly droughts and heat waves, significantly impacts global photosynthesis and forest ecosystem sustainability. To understand how trees respond to and recover from hydrological stress, we investigated the combined effects of soil moisture and atmospheric vapour pressure deficit (VPD) on seedlings of the two major European broadleaved tree species Fagus sylvatica (FS) and Quercus robur (QR). The experiment was conducted under natural forest gap conditions, while soil water availability was strictly manipulated. We monitored gas exchange (net photosynthesis, stomatal conductance and transpiration rates), nonstructural carbohydrates (NSC) concentration in roots and stomatal morphometry (size and density) during a drought period and recovery. Our comparative empirical study allowed us to distinguish and quantify the effects of soil drought and VPD on stomatal behavior, going beyond theoretical models. We found that QR conserved water more conservatively than FS by reducing transpiration and regulating stomatal conductance under drought. FS maintained higher stomatal conductance and transpiration at elevated VPD until soil moisture became critically low. QR showed higher intrinsic water use efficiency than FS. Stomata density and size also likely played a role in photosynthetic rate and speed of recovery, especially since QR with its seasonal adjustments in stomatal traits (smaller, more numerous stomata in summer leaves) responded and recovered faster compared to FS. Our focal species showed different responses in NSC content under drought stress and recovery, suggesting possible different evolutionary pathways in coping with stress. QR mobilized soluble sugars, while FS relied on starch mobilization to resist drought. Although our focal species often co-occur in mixed forests, our study showed that they have evolved different physiological, morphological and biochemical strategies to cope with drought stress. This suggests that ongoing climate change may alter their competitive ability and adaptive potential in favor of one of the species studied.

2.
Microorganisms ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38930544

ABSTRACT

Soil bacterial communities play a remarkable role in nutrient cycling, significantly affecting soil organic material content, soil fertility, and, in an indirect way, plant succession processes. Conversely, vegetation type influences microbial soil life. The present study compared the bacterial microbiome composition, diversity and catabolic activity profile of topsoil samples collected under three different forest types (a twice-coppiced black locust stand, a young, naturally reforested, and a middle-aged mixed pedunculate oak stand) planted on former arable land in the early 20th century. Diversity indices determined during 16S ribosomal RNA sequencing-based metagenome analysis indicated that the black locust stand had the highest soil bacterial community diversity. At the phylum level, Acidobacteriota, Actinobacteriota, Proteobacteria, Verrucomicrobiota, Bacteroidota, and Gemmatimonadota were the most abundant taxa in the forest soils. Concerning soil parameters, redundancy analysis revealed that pH had the highest impact on bacterial community structure and pH, and soil organic carbon content on the samples' respiration patterns. As for catabolic activity, the recently clearcut oak forest showed the lowest substrate-induced respiration, and citrate was the main driver for the inter-stand variability of microbial activity. Our results confirm that soil parameters and forest type influence the composition and functioning of the soil bacterial microbiome.

3.
Environ Microbiome ; 18(1): 63, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37480131

ABSTRACT

BACKGROUND: The effect of soil on the plant microbiome is well-studied. However, less is known about the impact of the soil microbiome in multitrophic systems. Here we examined the effect of soil on plant and aphid microbiomes, and the reciprocal effect of aphid herbivory on the plant and soil microbiomes. We designed microcosms, which separate below and aboveground compartments, to grow oak seedlings with and without aphid herbivory in soils with three different microbiomes. We used amplicon sequencing and qPCR to characterize the bacterial and fungal communities in soils, phyllospheres, and aphids. RESULTS: Soil microbiomes significantly affected the microbial communities of phyllospheres and, to a lesser extent, aphid microbiomes, indicating plant-mediated assembly processes from soil to aphids. While aphid herbivory significantly decreased microbial diversity in phyllospheres independent of soil microbiomes, the effect of aphid herbivory on the community composition in soil varied among the three soils. CONCLUSIONS: This study provides experimental evidence for the reciprocal influence of soil, plant, and aphid microbiomes, with the potential for the development of new microbiome-based pest management strategies.

4.
Metabolites ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37512511

ABSTRACT

The two main species, sessile oak (Quercus petraea Liebl.) and pedunculate oak (Quercus robur L.), predominant in French forests, are mainly used for aging wines and spirits; however, the potential of oak wood extract as a source of natural antioxidants, due to its high polyphenol content, could be more widely exploited. This study focuses on three oak species, the two that are well-known, namely, sessile and pedunculate oak, and a third that has seldom been described and valorized, namely, pubescent oak (Quercus pubescens). Water extracts of these three species were fractionated by semi-preparative HPLC. The antioxidant activities of crude extracts and fractions were measured by colorimetric and enzymatic tests. The anti-elastase and anti-collagenase activities of the extracts and their fractions were also evaluated. In parallel, samples were analyzed by UHPLC-HRMS to correlate the activity with the molecular composition using molecular networks. The results obtained for the total extract of the three species were compared to determine if the activity depended on the species. The results within the same species were also compared to highlight which fraction and, therefore, which molecular family was involved in the activity of the total extract. The various antioxidant tests showed good activity of the total extract for the three species of oak and a very good anti-collagenase activity. The antioxidant activity of oak extract has already been proven in the literature and this is correlated with its richness in polyphenols. This study shows that each molecular family of the extract contributes to the activities of the total extract. Oak extract can be used to neutralize the ROS produced during oxidative stress and to prevent the degradation of collagen and elastase during skin aging. Its complementary properties make oak extract a valuable ingredient to act against skin aging.

5.
Plants (Basel) ; 12(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375856

ABSTRACT

The conservation of the genetic resources of old trees is crucial to their ecological role but is extremely difficult, especially for oak species (Quercus spp.) displaying recalcitrance in seed and vegetative propagation methods. Our study aimed to assess the regenerative potential of Quercus robur trees of different ages (up to 800 years) during micropropagation. We also aimed to determine how in vitro conditions can influence in vitro regeneration responses. Lignified branches collected from 67 selected trees were cultivated ex vitro in culture pots at 25 °C to obtain epicormic shoots (explant sources). The explants were cultivated on an agar medium supplemented with 0.8 mg L-1 6-benzylaminopurine (BAP) for at least 21 months. In a second experiment, two different shoot multiplication conditions (temporary immersion-RITA® bioreactor and agar medium) and two culture medium formulations (Woody Plant Medium and modified Quoirin and Lepoivre medium) were tested. The results showed that the mean length of the epicormic shoots obtained in a pot culture was a function of donor age and was similar among the group of younger trees (ca. 20-200 years), and varied between older trees (ca. 300-800 years). The efficiency of in vitro shoot multiplication strictly depended on the genotype. A sustainable in vitro culture (defined as survival after 6 months) was only possible for half of the tested old donor trees, even when they survived the first month of in vitro growth. A continuous monthly increase in the number of in vitro cultured shoots was reported in younger oaks and in some old oaks. We found a significant effect of the culture system and the macro- and micronutrient composition on in vitro shoot growth. This is the first report demonstrating that the in vitro culture can be successfully applied to the propagation of even 800-year-old pedunculate oak trees.

6.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108671

ABSTRACT

The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.


Subject(s)
Mycorrhizae , Quercus , Mycorrhizae/physiology , Plant Growth Regulators/metabolism , Quercus/metabolism , Drought Resistance , Abscisic Acid/metabolism , Betaine/metabolism , Polyamines/metabolism , Spermidine/metabolism , Spermine/metabolism , Droughts , Proline/metabolism
7.
Life (Basel) ; 13(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36983864

ABSTRACT

Oak bark is a rich niche for beneficial bioactive compounds. It is known that the amount of the compounds found in plant tissues can depend on species, genotype, growth site, etc., but it is unclear whether oak phenology, i.e., late or early bud burst, can also influence the amount of phenols and antioxidants that can be extracted. We tested two Quercus robur populations expressing different phenology and five half-sib families in each population to see how phenology, genotype, as well as extrahent differences (75% methanol or water) can determine the total phenol, total flavonoid content, as well as antioxidant activity. Significant statistical differences were found between half-sib families of the same population, between populations representing different oak phenology and different extrahents used. We determined that the extraction of flavonoids was more favorable when using water. So was antioxidant activity using one of the indicators, when significant differences between extrahents were observed. Furthermore, in families where there was a significant difference, phenols showed better results when using methanol. Overall, late bud burst families exhibited higher levels in all parameters tested. Thus, we recommend that for further bioactive compound extraction, all these factors be noted.

8.
Plants (Basel) ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771718

ABSTRACT

Oak powdery mildew caused by Erysiphe alphitoides (Griffon and Maubl.; U. Braun & S. Takam.) is a common disease in European forests. One of the most susceptible species is the pedunculate oak (Quercus robur L.). Presently, a few methods are available to control powdery mildew, e.g., the use of fungicides (e.g., based on citric acid), antagonistic fungi or bacteria, chemical treatments (e.g., sulphur, potassium bicarbonate) or genetic resistance. In our study, we aimed to check the effects of using chitosan derivatives and novel active substances inducing the plants' natural resistance: benzodiathiadiazole (both in neutral and salt form). 84 pedunculate oak seedlings were subjected to the experiment in three treatment variants (plus positive and negative controls). The plants were treated with active substances and inoculated with E. alphitoides. Although the powdery mildew symptoms appeared in all variants, they were manifested mainly by the mycelium in the form of small spots. The experiment indicated that the highest limitation of powdery mildew mycelium was achieved by applying N-methyl-N-methoxyamide-7-carboxybenzo(1,2,3)thiadiazole (BTHWA). The application of BTHWA reduced disease development by 88.9% when compared to the effects of the other variants.

9.
Materials (Basel) ; 16(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614771

ABSTRACT

Subfossil wood is a valuable and rare material often used for production of expensive furniture and decorative artistic items of unique beauty. Its mechanical and tribological properties are still being studied and are considered specific due to the particular conditions of its long-lasting formation in aqueous sediment sludge. Various elements that have been impregnated into the wood tissue over many years make the machining and grinding of this type of wood rather difficult compared to normal recent wood. The main objective of this study was to determine the influence of the abrasive grain size of sandpaper on the abrasion volume loss of recent and two subfossil oak samples in three characteristic sections (cross, radial, and tangential). The results showed that the average size of abrasive grains and the orientation of the wood structure have an influence on the abrasion volume loss of all three samples. The phenomenon of the critical size of abrasive grains was observed in all samples and on all sections. As the size of abrasive grains increased to the critical size, the abrasive volume loss of the sample increased simultaneously. The lowest abrasion volume loss was observed on recent oak. In all samples, the lowest volume loss was measured on the cross sections, and the tangential and radial sections had mutually equal values. It was also found that the increase in the size of abrasive grains to a critical value resulted in the increasing value of the absolute difference between the abrasion volume loss of the cross, radial, and tangential section samples, while the relative relations between the abrasive volume loss values of three different sections (C/R, C/T, R/T) within the same grit of sandpaper remained quite similar.

10.
Front Plant Sci ; 13: 897186, 2022.
Article in English | MEDLINE | ID: mdl-35991442

ABSTRACT

Plants interact with a multitude of microorganisms and insects, both below- and above ground, which might influence plant metabolism. Despite this, we lack knowledge of the impact of natural soil communities and multiple aboveground attackers on the metabolic responses of plants, and whether plant metabolic responses to single attack can predict responses to dual attack. We used untargeted metabolic fingerprinting (gas chromatography-mass spectrometry, GC-MS) on leaves of the pedunculate oak, Quercus robur, to assess the metabolic response to different soil microbiomes and aboveground single and dual attack by oak powdery mildew (Erysiphe alphitoides) and the common oak aphid (Tuberculatus annulatus). Distinct soil microbiomes were not associated with differences in the metabolic profile of oak seedling leaves. Single attacks by aphids or mildew had pronounced but different effects on the oak leaf metabolome, but we detected no difference between the metabolomes of healthy seedlings and seedlings attacked by both aphids and powdery mildew. Our findings show that aboveground attackers can have species-specific and non-additive effects on the leaf metabolome of oak. The lack of a metabolic signature detected by GC-MS upon dual attack might suggest the existence of a potential negative feedback, and highlights the importance of considering the impacts of multiple attackers to gain mechanistic insights into the ecology and evolution of species interactions and the structure of plant-associated communities, as well as for the development of sustainable strategies to control agricultural pests and diseases and plant breeding.

11.
Phytochem Anal ; 32(5): 660-671, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33197960

ABSTRACT

INTRODUCTION: Two species of oak are dominant in French forests: pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea Liebl.). Differentiating oak species is difficult, since features such as morphological characters, geographical origin and grain are not always relevant. Even if the former is generally richer in tannin compounds while the latter is often richer in aromatic compounds, the intra-species variability is high. The characterisation of the oak species remains a suitable indicator of the molecular composition and quality of the wood. OBJECTIVES: The aim of this study was to determine differentiating molecules allowing oak species identification in order to assist in a suitable wood selection for a better oak tree valorisation since the selection of the oak wood to be used in the production of barrels plays an essential role in wine ageing. MATERIALS AND METHODS: Oak wood samples were collected both in forests and in cooperage timber yards. An untargeted metabolomic approach using ultra-high-pressure liquid chromatography qualitative time-of-flight high-resolution mass spectrometry (UHPLC-Q-TOF-HRMS) associated to multivariate statistical analyses (hierarchical ascendant clustering and partial least squares discriminant analysis) was implemented to determine molecular markers of oak species. RESULTS: Heartwood was identified as the suitable wood part to distinguish oak species. Discriminating molecules did not depend on the sample set. The pedunculate species showed overexpression of bartogenic derivatives while sessile oak presented a higher content in oak lactone precursors and in quercotriterpenosids. CONCLUSION: The developed method allowed the identification of relevant compounds for oak species identification to a better wood valorisation and selection.


Subject(s)
Quercus , Wine , Chromatography, High Pressure Liquid , Mass Spectrometry , Wine/analysis , Wood
12.
Agric For Meteorol ; 290: 108031, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32817727

ABSTRACT

We explored the inter-individual variability in bud-burst and its potential drivers, in homogeneous mature stands of temperate deciduous trees. Phenological observations of leaves and wood formation were performed weekly from summer 2017 to summer 2018 for pedunculate oak, European beech and silver birch in Belgium. The variability of bud-burst was correlated to previous' year autumn phenology (i.e. the onset of leaf senescence and the cessation of wood formation) and tree size but with important differences among species. In fact, variability of bud-burst was primarily related to onset of leaf senescence, cessation of wood formation and tree height for oak, beech and birch, respectively. The inter-individual variability of onset of leaf senescence was not related to the tree characteristics considered and was much larger than the inter-individual variability in bud-burst. Multi-species multivariate models could explain up to 66% of the bud-burst variability. These findings represent an important advance in our fundamental understanding and modelling of phenology and tree functioning of deciduous tree species.

13.
Physiol Mol Biol Plants ; 25(6): 1377-1384, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31736541

ABSTRACT

The use of pedunculate oak (Quercus robur L.), along with other tree species, for the afforestation of heavy metal contaminated lands is an attractive prospect. Little, however, is known of Q. robur tolerance and its antioxidative system response to heavy metal exposure. The main objective of the study was to determine the cadmium-induced changes in antioxidative system of pedunculate oak in an attempt to identify molecular mechanisms underlying Cd tolerance. This may be of great importance in respect of using Q. robur for phytoremediation purposes. As the response of the antioxidative system to heavy metal contamination can vary within species, the research was conducted on oak seedlings from two different regions of origin. Differences in antioxidative system response of seedlings derived from tested regions of origin were noticed both at the transcript and enzyme activity levels. The obtained results indicate that ascorbate peroxidase (APX; EC 1.11.1.11) and superoxide dismutase (SOD; EC 1.15.1.1) play a first barrier role in oak seedlings response to the oxidative stress caused by Cd exposure. Catalase (CAT; EC 1.11.1.6) is involved in reducing the negative effects of prolonged Cd treatment.

14.
Sci Total Environ ; 694: 133709, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31394332

ABSTRACT

This study focuses on the climate growth drivers of Quercus robur L. (pedunculate oak) and Q. robur subsp. pedunculiflora K. Koch. (greyish oak), occurring in the biodiversity of three sites in southern Romania. We determined the degree of tolerance of the greyish oak, between the tardive and praecox varieties, to environmental stress, between 1951 and 2016. Total tree ring-width (RW), and earlywood (EW) and latewood (LW) measurements were subject of periodical and monthly climate-growth analysis. Our results revealed a moderate relationship between climate and tree-growth. A significant and positive relationship was observed between RW and previous growing season precipitation. Mean and minimum temperatures affected both positive and negative tree-rings during the growing season. We also observed that winter and spring represent key seasons for differentiating tardive from praecox varieties, affecting the intra-annual variability of ring-width, and EW and LW parameters. The correlation between the tree-ring measurements and daily climate data shows a clear offset of the starting growth between greyish oak varieties. A weak influence of stressors on tree-growth at the sites was observed through pointer year and resilience components analysis.


Subject(s)
Environmental Monitoring/methods , Quercus/growth & development , Climate , Romania
15.
Ecology ; 98(10): 2574-2584, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28718884

ABSTRACT

Dispersal, environment and genetic variation may all play a role in shaping host-parasite dynamics. Yet, in natural systems, their relative importance remains unresolved. Here, we do so for the epidemiology of a specialist parasite (Erysiphe alphitoides) on the pedunculate oak (Quercus robur). For this purpose, we combine evidence from a multi-year field survey and two dispersal experiments, all conducted at the landscape scale. Patterns detected in the field survey suggest that the parasite is structured as a metapopulation, with trees in denser oak stands characterized by higher parasite occupancy, higher colonization rates and lower extinction rates. The dispersal experiments revealed a major impact of the environment and of host genotype on the presence and abundance of the parasite, with a weaker but detectable imprint of dispersal limitation. Overall, our findings emphasize that dispersal, host genotype and the environment jointly shape the spatial dynamics of a parasite in the wild.


Subject(s)
Ascomycota/physiology , Genotype , Quercus/microbiology , Animals , Parasites , Quercus/parasitology , Trees
16.
Ecol Evol ; 7(8): 2585-2594, 2017 04.
Article in English | MEDLINE | ID: mdl-28428849

ABSTRACT

Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.

17.
Sensors (Basel) ; 16(8)2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27548173

ABSTRACT

Efforts to predict the germination ability of acorns using their shape, length, diameter and density are reported in the literature. These methods, however, are not efficient enough. As such, a visual assessment of the viability of seeds based on the appearance of cross-sections of seeds following their scarification is used. This procedure is more robust but demands significant effort from experienced employees over a short period of time. In this article an automated method of acorn scarification and assessment has been announced. This type of automation requires the specific setup of a machine vision system and application of image processing algorithms for evaluation of sections of seeds in order to predict their viability. In the stage of the analysis of pathological changes, it is important to point out image features that enable efficient classification of seeds in respect of viability. The article shows the results of the binary separation of seeds into two fractions (healthy or spoiled) using average components of regular red-green-blue and perception-based hue-saturation-value colour space. Analysis of accuracy of discrimination was performed on sections of 400 scarified acorns acquired using two various setups: machine vision camera under uncontrolled varying illumination and commodity high-resolution camera under controlled illumination. The accuracy of automatic classification has been compared with predictions completed by experienced professionals. It has been shown that both automatic and manual methods reach an accuracy level of 84%, assuming that the images of the sections are properly normalised. The achieved recognition ratio was higher when referenced to predictions provided by professionals. Results of discrimination by means of Bayes classifier have been also presented as a reference.


Subject(s)
Germination/physiology , Image Processing, Computer-Assisted , Seeds/growth & development , Bayes Theorem , Color , Light
18.
Front Plant Sci ; 7: 775, 2016.
Article in English | MEDLINE | ID: mdl-27379108

ABSTRACT

Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of 'flood rings' that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic conductivity due to anomalously narrow earlywood vessels in flooded stem parts, contribute to reduced radial growth after flooding events. Our findings support the value of flood rings to reconstruct spring flooding events that occurred prior to instrumental flood records.

19.
Int J Biometeorol ; 60(8): 1143-50, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26607274

ABSTRACT

Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.


Subject(s)
Cold Temperature , Quercus/growth & development , Poland , Seasons , Trees/growth & development
20.
Plant Physiol Biochem ; 97: 323-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26519820

ABSTRACT

We characterized the short-term response to waterlogging in Quercus petraea (Matt.) Liebl. and Quercus robur L. as the initial response towards their known long-term differences in tolerance to waterlogging. One-month old seedlings were subjected to hypoxic stress and leaf gas exchange, shoot water potential (Ψs) and root hydraulic conductivity (Lpr) were measured. In parallel, the expression of nine aquaporins (AQPs) along the primary root was analysed by quantitative RT-PCR. Results showed a similar reduction in net assimilation (A) and stomatal conductance (gs) for the two species. Notably, the response of Lpr differed temporally between the two species. Q. robur seedlings exhibited a significant early decline of Lpr within the first 5 h that returned to control levels after 48 h, whereas Q. petraea seedlings showed a delayed response with a significant decrease of Lpr exhibited only after 48 h. Transcriptional profiling revealed that three genes (PIP1;3, TIP2;1 and TIP2;2) were differentially regulated under stress conditions in the two oak species. Taken together, these results suggested species-specific responses to short-term waterlogging in terms of root water transport.


Subject(s)
Aquaporins/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/physiology , Quercus/genetics , Quercus/physiology , Transcription, Genetic , Water/metabolism , Aquaporins/metabolism , Gene Expression Regulation, Plant/drug effects , Oxygen/pharmacology , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Shoots/physiology , Quercus/drug effects , Time Factors , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL