Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 680
Filter
1.
Chemosphere ; : 143074, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151581

ABSTRACT

The presence of per- and polyfluoroalkyl substances (PFASs) in commercial baby food products from various European countries was investigated in this study. A total of 96 samples were collected and analyzed to assess PFASs levels, composition profiles, and potential dietary intake among infants. The results indicated detectable levels of PFASs in the sampled baby food products, with carboxylic acid prevalence over sulfonic acids. Among the various baby food groups studied, dry cereals exhibited the highest PFASs concentrations. This finding emphasizes the need for further monitoring and investigation of PFASs contamination in this specific food category. While the concentrations detected were generally low, they indicated the widespread presence of PFASs in various types of baby food. Furthermore, a preliminary exposure assessment was conducted on the basis of the measured PFASs concentrations, providing an initial insight into the potential exposure levels among infants from three months to three years old. Calculations based on two scenario types revealed the best-case scenario likely underestimating actual exposure, while the worst-case scenario occasionally exceeded the limits set by the governmental institutions. Further research is needed to understand the sources, pathways, and potential health effects of PFASs exposure in this vulnerable population.

2.
J Sep Sci ; 47(15): e2400235, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135212

ABSTRACT

Poly- and perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants whose high stability and appreciable water solubility have led to near-global contamination. PFAS are bioaccumulative toxins that have been linked to a myriad of disorders and have been detected nearly universally in human blood. Liquid chromatography-tandem mass spectrometry is the most frequent method used for quantitation, though this typically only measures a few dozen of the >14 000 known PFAS and has been shown to account for a small portion of the total organic fluorine present. Sum parameter methods such as total, extractable, and adsorbable organic fluorine have emerged as alternative measurements for PFAS determination. Combustion ion chromatography has become the preferred method for organofluorine measurement where the sorbent or extract containing PFAS is combusted and the emitted hydrofluoric acid (HF) is a measure of the cumulative organofluorine present. Herein we critically review the types of organofluorine measurement, their separation from the sample matrix, and key parameters of the analytical instrument that affect sensitivity, reproducibility, and recovery with regards to PFAS analysis.

3.
J Immunotoxicol ; 21(1): 2340495, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946256

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic organofluorine compounds that persist indefinitely in the environment and bioaccumulate throughout all trophic levels. Biomonitoring efforts have detected multiple PFAS in the serum of most people. Immune suppression has been among the most consistent effects of exposure to PFAS. PFAS often co-occur as mixtures in the environment, however, few studies have examined immunosuppression of PFAS mixtures or determined whether PFAS exposure affects immune function in the context of infection. In this study, mixtures containing two or four different PFAS and a mouse model of infection with influenza A virus (IAV) were used to assess immunotoxicity of PFAS mixtures. PFAS were administered via the drinking water as either a binary mixture of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) or quaternary mixture of PFOS, PFOA, perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). The results indicated that the binary mixture affected the T-cell response, while the quaternary mixture affected the B-cell response to infection. These findings indicate that the immunomodulatory effects of PFAS mixtures are not simply additive, and that the sensitivity of immune responses to PFAS varies by cell type and mixture. The study also demonstrates the importance of studying adverse health effects of PFAS mixtures.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Influenza A virus , Orthomyxoviridae Infections , Fluorocarbons/adverse effects , Fluorocarbons/toxicity , Animals , Mice , Influenza A virus/immunology , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/adverse effects , Orthomyxoviridae Infections/immunology , Caprylates/toxicity , Caprylates/adverse effects , Humans , Female , Mice, Inbred C57BL , Influenza, Human/immunology , Disease Models, Animal , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
4.
J Hazard Mater ; 476: 135118, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38981229

ABSTRACT

This study investigates soil washing as a viable strategy to remove poly- and perfluoroalkyl substances (PFAS) from contaminated soils using various washing agents including water, methanol, ethanol, and cyclodextrin ((2-Hydroxypropyl)-ß-cyclodextrin HPCD)). Water was less effective (removing only 30 % of PFAS), especially for long-chain hydrophobic PFAS. Methanol (50 % v/v) or HPCD (10 mg g-1 soil) achieved > 95 % PFAS removal regardless of PFAS type, soil size fraction (0-400 µm or 400-800 µm), or experimental setups (batch or column, at liquid/solid (L/S) = 1). Column optimization studies revealed improved efficiency at L/S = 10 with diluted washing solutions, where HPCD exhibited rapid PFAS mobilization even at lower concentrations (1 mg mL-1). We then applied a first-order decay model to effectively predict PFAS breakthrough curves and mobilization within soil columns. Subsequent treatment of wash effluents by activated carbon and biochar effectively reduced PFAS concentrations below detection limits. The performance of both soil washing and subsequent adsorption was found to depend strongly on the specific characteristics of PFAS compounds. These findings highlight the significant potential of methanol and HPCD in soil washing and the effectiveness of integrated soil washing and adsorption for optimizing PFAS removal.

5.
Water Res ; 262: 122095, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032330

ABSTRACT

The source region of the Yellow River (SRYR) located in the northeast of the Qinghai-Tibetan Plateau is not only the largest runoff-producing area in the Yellow River Basin, but also the most important freshwater-supply ecological function area in China. In this study, the short-term spatiotemporal distribution of selected legacy and alternative perfluoroalkyl acids (PFAAs) in the SRYR was first investigated in multiple environmental media. Total PFAA concentrations were in the range of 1.16-14.3 ng/L, 4.25-42.1 pg/L, and 0.21-13.0 pg/g dw in rainwater, surface water, and sediment, respectively. C4-C7 PFAAs were predominant in various environmental matrices. Spatiotemporal characteristics were observed in the concentrations and composition profiles. Particularly, the spatial distribution of rainwater and the temporal distribution of surface water exhibited highly significant differences (p<0.01). Indian monsoon, westerly air masses, and local mountain-valley breeze were the driving factors that contributed to the change of rainwater. Rainwater, meltwater runoff, and precursor degradation were important sources of PFAA pollution in surface water. Organic carbon content was a major factor influencing PFAA distribution in sediment. These results provide a theoretical basis for revealing the regional transport and fate of PFAAs, and are also important prerequisites for effectively protecting the freshwater resource and aquatic environment of the Qinghai-Tibetan Plateau.


Subject(s)
Environmental Monitoring , Fluorocarbons , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Tibet , China , Spatio-Temporal Analysis , Rain , Geologic Sediments/chemistry
6.
J Hazard Mater ; 477: 135269, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39068881

ABSTRACT

Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.


Subject(s)
Alkanesulfonic Acids , Daphnia , Fluorocarbons , Fresh Water , Water Pollutants, Chemical , Fluorocarbons/toxicity , Daphnia/drug effects , Animals , Water Pollutants, Chemical/toxicity , Alkanesulfonic Acids/toxicity , Ecosystem , Decanoic Acids/toxicity , Fatty Acids , Toxicity Tests , Sulfonic Acids
7.
Toxicol Appl Pharmacol ; 489: 117015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917890

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.


Subject(s)
Computer Simulation , Fluorocarbons , Kidney Tubules, Proximal , Models, Biological , Humans , Fluorocarbons/pharmacokinetics , Kidney Tubules, Proximal/metabolism , Half-Life , Metabolic Clearance Rate , Workflow , Renal Elimination , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/metabolism , Epithelial Cells/metabolism
8.
Environ Sci Pollut Res Int ; 31(30): 42593-42613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900403

ABSTRACT

The prevalence of polyfluoroalkyls and perfluoroalkyls (PFAS) represents a significant challenge, and various treatment techniques have been employed with considerable success to eliminate PFAS from water, with the ultimate goal of ensuring safe disposal of wastewater. This paper first describes the most promising electrochemical oxidation (EO) technology and then analyses its basic principles. In addition, this paper reviews and discusses the current state of research and development in the field of electrode materials and electrochemical reactors. Furthermore, the influence of electrode materials and electrolyte types on the deterioration process is also investigated. The importance of electrode materials in ethylene oxide has been widely recognised, and therefore, the focus of current research is mainly on the development of innovative electrode materials, the design of superior electrode structures, and the improvement of efficient electrode preparation methods. In order to improve the degradation efficiency of PFOS in electrochemical systems, it is essential to study the oxidation mechanism of PFOS in the presence of ethylene oxide. Furthermore, the factors influencing the efficacy of PFAS treatment, including current density, energy consumption, initial concentration, and other parameters, are clearly delineated. In conclusion, this study offers a comprehensive overview of the potential for integrating EO technology with other water treatment technologies. The continuous development of electrode materials and the integration of other water treatment processes present a promising future for the widespread application of ethylene oxide technology.


Subject(s)
Electrodes , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Fluorocarbons/chemistry , Electrochemical Techniques , Water Purification/methods , Wastewater/chemistry
9.
Sci Total Environ ; 946: 174137, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909806

ABSTRACT

Poly/perfluoroalkyl substances (PFAS) are persistent organic pollutants and ubiquitous in aquatic environment, which are hazardous to organisms and human health. Several countries and regions have taken actions to regulate or limit the production and emission of some PFAS. Even though a series of water treatment technologies have been developed for removal of PFAS to eliminate their potential adverse effects, the removal and degradation performance are usually unsatisfactory. Photocatalytic degradation of PFAS is considered as one of the most effective approaches due to the mild operation conditions and environmental friendliness. This review systematically summarized the recent advances in photocatalytic degradation of PFAS based on heterogeneous photocatalysts, including TiO2-, Ga2O3-, In2O3-, ZnO-, Bi-based, and others. Overall, two mainly degradation mechanisms were involved, including photo-oxidation (involving the holes and oxidative radicals) and photo-reduction types (by e- and reductive radicals). The band structures of the photocatalysts, degradation pathways, structure-function relationship, and impacting factors were further discussed to elucidate the essential reasons for the enhanced degradation of PFAS. Furthermore, the review identified the major knowledge gaps to solve the issues of photocatalysis in real application. This paper also propounded several strategies to promote the design and optimization of high-efficient photocatalysts, and meet the challenges to remove PFAS through photodegradation technologies.

10.
Sci Total Environ ; 945: 173993, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38879026

ABSTRACT

A total of 17 groups of wastewaters from the chemical industrial parks and matched receiving river waters were collected in the east of China. The measured total concentrations of 21 analyzed PFAS analogues (∑21PFAS) in the influents and effluents of the wastewater treatment plants (WWTPs) were in the range of 0.172-20.6 µg/L (mean: 18.2 µg/L, median: 3.9 µg/L) and 0.167-93.6 µg/L (mean: 10.8 µg/L, median: 1.12 µg/L), respectively, which were significantly higher than those observed in the upstream (range: 0.0158-7.05 µg/L, mean: 1.09 µg/L, median: 0.482 µg/L) and downstream (range: 0.0237-1.82 µg/L, mean: 0.697 µg/L, median: 0.774 µg/L) receiving waters. Despite the concentrations and composition profiles of PFAS varied in the water samples from different sampling sites, PFOA was generally the major PFAS analogue in the research areas, mainly due to the history of PFOA production and usage as well as the specific exemptions. The calculated concentration ratios of the short-chain PFCAs and PFSAs to their respective predecessors (PFOA and PFOS) in most of the samples far exceeded 1, indicating a shift from legacy PFOA and PFOS to short-chain PFAS in the research areas. Correlation network analysis and the calculated concentration ratios of PFAS in the effluents versus influents indicated transformation may have occurred during the water treatment processes and PFAS could not be efficiently removed in the WWTPs. Wastewater discharge of chemical industrial parks is a vital source of PFAS dispersed into the aquatic environment.

11.
Ann Occup Environ Med ; 36: e10, 2024.
Article in English | MEDLINE | ID: mdl-38872635

ABSTRACT

Background: Perfluoroalkyl substances (PFAS) are widely used in industry and daily life due to their useful properties. They have a long half-life, accumulate in the body, and there is evidence that they are associated with biomarkers of lipid metabolism and liver damage. This may suggest non-alcoholic fatty liver disease (NAFLD) caused by PFAS. However, since there has been no study analyzing the relationship between PFAS and NAFLD in the entire population in Korea. We sought to confirm the relationship between serum PFAS concentration and NAFLD prevalence in Korean adults using the Korean National Environmental Health Survey (KoNEHS) cycle 4. Methods: The study was conducted on 2,529 subjects in 2018-2019 among KoNEHS participants. For the diagnosis of NAFLD, the hepatic steatosis index (HSI) was used, and the geometric mean and concentration distribution of serum PFAS were presented. Logistic regression was performed to confirm the increase in the risk of NAFLD due to changes in PFAS concentration, and the odds ratio and 95% confidence interval (CI) were calculated. Results: In both adjusted and unadjusted models, an increased odds ratio was observed with increasing serum concentrations of total PFAS and perfluorooctane sulfonate (PFOS) in the non-obese group. In the adjusted model, the odds ratios for serum total PFAS and PFOS were 6.401 (95% CI: 1.883-21.758) and 7.018 (95% CI: 2.688-18.319). Conclusions: In this study, a higher risk of NAFLD based on HSI was associated with serum total PFAS, PFOS in non-obese group. Further research based on radiological or histological evidence for NAFLD diagnosis and long-term prospective studies are necessary. Accordingly, it is necessary to find ways to reduce exposure to PFAS in industry and daily life.

12.
BMC Plant Biol ; 24(1): 556, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877484

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.


Subject(s)
Caprylates , Fluorocarbons , Ocimum basilicum , Photosynthesis , Plant Leaves , Ocimum basilicum/metabolism , Ocimum basilicum/growth & development , Ocimum basilicum/drug effects , Caprylates/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Photosynthesis/drug effects , Fluorocarbons/metabolism , Oxidative Stress , Lipid Peroxidation/drug effects
13.
Chemosphere ; 362: 142631, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885768

ABSTRACT

Due to their widespread production and known environmental contamination, the need for the detection and remediation of per- and polyfluoroalkyl substances (PFAS) has grown quickly. While destructive thermal treatment of PFAS at low temperatures (e.g., 200-500 °C) is of interest due to lower energy and infrastructure requirements, the range of possible degradation products remains underexplored. To better understand the low temperature decomposition of PFAS species, we have coupled gas-phase infrared spectroscopy with a multivariate curve resolution (MCR) analysis and a database of high-resolution PFAS infrared reference spectra to characterize and quantify a complex mixture resulting from potassium perfluorooctanesulfonate (PFOS-K) decomposition. Beginning at 375 °C, nine prevalent decomposition products (namely smaller perfluorocarbon species) are identified and quantified.


Subject(s)
Environmental Restoration and Remediation , Fluorocarbons , Spectrophotometry, Infrared , Fluorocarbons/chemistry , Fluorocarbons/analysis , Environmental Restoration and Remediation/methods , Alkanesulfonic Acids/chemistry , Alkanesulfonic Acids/analysis , Environmental Pollutants/chemistry , Environmental Pollutants/analysis , Temperature
15.
J Pharm Biomed Anal ; 246: 116203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759320

ABSTRACT

The ubiquity of perfluoroalkyl substances has raised concerns about the unintended consequences of PFAS exposure on human health. In the present study, an eco-friendly ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of 17 PFAS in human serum and semen samples. QuEChERS salts MgSO4:NaCl 4:1 (w/w) were used for the extraction. The separation of analytes was performed on an ACQUITY BEH C18 column (100 × 2.1 mm, 1.7 µm), using water:methanol 95:5 and methanol as mobile phases A and B, respectively, both containing 2 mM ammonium acetate. Multiple reaction monitoring (MRM) in negative ion mode was used, selecting two transitions for each analyte, except for perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA). The analytical method was validated according to the Organization of Scientific Area Committees (OSAC) for Forensic Sciences guidelines and AGREE approach software was used to evaluate the greenness of the method. The developed procedure was applied to the analysis of 10 paired human serum and semen samples, proving the suitability in high throughput laboratories due to the easy preparation and the reduced volume of toxic solvents. Moreover, it allows to perform further investigation on the correlation between serum and semen PFAS concentration, focusing on male reproductive system correlated pathologies, such as male infertility.


Subject(s)
Fluorocarbons , Semen , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Fluorocarbons/blood , Fluorocarbons/analysis , Chromatography, High Pressure Liquid/methods , Male , Semen/chemistry , Green Chemistry Technology/methods , Reproducibility of Results , Environmental Pollutants/blood , Environmental Pollutants/analysis , Limit of Detection , Liquid Chromatography-Mass Spectrometry
16.
Environ Health ; 23(1): 42, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627679

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS: The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS: During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS: For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.


Subject(s)
Alkanesulfonic Acids , Cardiovascular Diseases , Drinking Water , Fluorocarbons , Kidney Neoplasms , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Male , Female , Humans , Drinking Water/analysis , Italy/epidemiology
17.
Chemosphere ; 358: 142160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685330

ABSTRACT

Recent research has found biochar to be a cost-effective adsorbent for removal of perfluoroalkyl substances in water. To promote cleaner production and sustainable waste management, this study explored the potential to produce activated biochars by co-pyrolyzing sawdust with iron-rich biosolids and polyaluminum sludge. The maximum capacity to adsorb perfluorooctanesulfonic acid (PFOS) reached 27.2 mg g-1 with biosolids-activated biochar and 19.2 mg g-1 with aluminum sludge-activated biochar, compared to 6.2 mg g-1 with sawdust biochar. The increased adsorption capacities were attributed to electrostatic interactions between the anionic PFOS and metal functionalities on the biochar surface. In contrast, hydrophobic interaction was the dominant adsorption mechanism of sawdust biochar. The presence of dissolved organic matter at 5-50 mg L-1 was found to inhibit adsorption of PFOS in water, while pH as low as 3.0 and sodium chloride concentrations up to 100 mM enhanced removal of PFOS by all the three adsorbents. In batch adsorption tests at environmentally relevant PFOS dosages and adsorbent dosage of 0.25 g L-1, the biosolids-sawdust biochar and Al sludge-sawdust biochar removed 71.4% and 66.9% of PFOS from drinking water and 77.9% and 87.9% of PFOS from filtrate of sludge digestate, respectively. The biosolids-sawdust biochar additionally removed Fe, although the Al sludge-sawdust biochar released Al into the alkaline drinking water and filtrate. Overall, this study proved co-pyrolyzing sawdust and Fe-rich biosolids to be an effective approach to activate sawdust biochar for enhanced removal of PFOS while recycling wastewater treatment residuals and sawdust.


Subject(s)
Alkanesulfonic Acids , Charcoal , Fluorocarbons , Wastewater , Water Pollutants, Chemical , Water Purification , Fluorocarbons/chemistry , Alkanesulfonic Acids/chemistry , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Water Purification/methods , Wood/chemistry , Waste Disposal, Fluid/methods
18.
Int J Hyg Environ Health ; 259: 114385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676994

ABSTRACT

AIMS: Recent epidemiologic research has examined the relationship between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and diabetes mellitus with inconclusive findings. In this cross-sectional study, we aimed to explore the association between serum PFAS concentrations and the prevalence of prediabetes and pre-diagnostic diabetes in the general Korean population as well as the combined effects of exposure to mixed PFAS compounds. METHODS: We analyzed data from participants aged ≥19 years enrolled in the Korean National Environmental Health Survey Cycle 4 (2018-2020). Individuals diagnosed with diabetes were excluded to minimize potential bias. We identified cases of pre-diagnostic diabetes based on the HbA1c level ≥6.5% and prediabetes as HbA1c levels of 5.7-6.49%. Serum concentrations of PFAS, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS), were quantified using high-performance liquid chromatography-tandem mass spectrometry. Survey-weighted logistic regression models were used to assess the relationships between PFAS levels and diabetes risk, adjusting for covariates. Additionally, Bayesian kernel machine regression (BKMR) was used to investigate the combined effects of exposure to mixed PFAS compounds. RESULTS: In the study population excluding participants with diagnosed diabetes (n = 2709), the prevalence of pre-diagnostic diabetes and prediabetes was 4.8% and 30.1%, respectively. Significant positive associations were found between serum PFHxS and PFOS quartiles and pre-diagnostic diabetes risk. Likewise, among those without diagnosed or pre-diagnostic diabetes (n = 2579), the highest quartiles of PFDeA, PFHxS, and PFOS and the overall PFAS level were associated with an increased risk of prediabetes compared with the lowest quartiles. BKMR analysis revealed a significant positive association between overall serum PFAS level and prediabetes risk, which was most marked for PFOS. CONCLUSIONS: These findings highlight the potential health implications of PFAS exposure and prediabetes risk. Further research is needed to validate these associations and identify potential mechanistic pathways.


Subject(s)
Alkanesulfonic Acids , Diabetes Mellitus , Environmental Pollutants , Fluorocarbons , Humans , Fluorocarbons/blood , Middle Aged , Female , Republic of Korea/epidemiology , Male , Diabetes Mellitus/epidemiology , Diabetes Mellitus/blood , Adult , Environmental Pollutants/blood , Alkanesulfonic Acids/blood , Cross-Sectional Studies , Aged , Health Surveys , Environmental Exposure/adverse effects , Prevalence , Caprylates/blood , Prediabetic State/blood , Prediabetic State/epidemiology , Decanoic Acids/blood , Young Adult , Fatty Acids
19.
Aquat Toxicol ; 270: 106907, 2024 May.
Article in English | MEDLINE | ID: mdl-38564994

ABSTRACT

Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Ecosystem , Water Pollutants, Chemical/toxicity , Amphibians/physiology , Reptiles/physiology , Fluorocarbons/analysis
20.
J Chromatogr A ; 1722: 464899, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626542

ABSTRACT

Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.


Subject(s)
Fluorine , Fluorocarbons , Magnetite Nanoparticles , Solid Phase Extraction , Tandem Mass Spectrometry , Water Pollutants, Chemical , Fluorocarbons/chemistry , Fluorocarbons/analysis , Fluorocarbons/isolation & purification , Fluorine/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Chromatography, High Pressure Liquid/methods , Porosity , Magnetite Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL