Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202412915, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083335

ABSTRACT

The device performance of deep-blue perovskite light-emitting diodes (PeLEDs) is primarily constrained by low external quantum efficiency (EQE) especially poor operational stability. Herein, we develop a facile strategy to improve deep-blue emission through rational interface engineering. We innovatively reported the novel electron transport material, 4,6-Tris(4-(diphenylphosphoryl)phenyl)-1,3,5-triazine (P-POT2T), and utilized a sequential wet-dry deposition method to form homogenic gradient interface between electron transport layer (ETL) and perovskite surface. Unlike previous reports that achieved carrier injection balance by inserting new interlayers, our strategy not only passivated uncoordinated Pb in the perovskite via P=O functional groups but also reduced interfacial carrier recombination without introducing new interfaces. Additionally, this strategy enhanced the interface contact between the perovskite and ETL, significantly boosting device stability. Consequently, the fabricated deep-blue PeLEDs delivered an external quantum efficiency (EQE) exceeding 5% (@ 460 nm) with an exceptional halftime extended to 31.3 minutes. This straightforward approach offers a new strategy to realize highly efficient especially stable PeLEDs.

2.
Sci Bull (Beijing) ; 69(14): 2231-2240, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38851911

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) exhibit remarkable potential in the field of displays and solid-state lighting. However, blue PeLEDs, a key element for practical applications, still lag behind their green and red counterparts, due to a combination of strong nonradiative recombination losses and unoptimized device structures. In this report, we propose a buried interface modification strategy to address these challenges by focusing on the bottom-hole transport layer (HTL) of the PeLEDs. On the one hand, a multifunctional molecule, aminoacetic acid hydrochloride (AACl), is introduced to modify the HTL/perovskite interface to regulate the perovskite crystallization. Experimental investigations and theoretical calculations demonstrate that AACl can effectively reduce the nonradiative recombination losses in bulk perovskites by suppressing the growth of low-n perovskite phases and also the losses at the bottom interface by passivating interfacial defects. On the other hand, a self-assembly nanomesh structure is ingeniously developed within the HTLs. This nanomesh structure is meticulously crafted through the blending of poly-(9,9-dioctyl-fluorene-co-N-(4-butyl phenyl) diphenylamine) and poly (n-vinyl carbazole), significantly enhancing the light outcoupling efficiency in PeLEDs. As a result, our blue PeLEDs achieve remarkable external quantum efficiencies, 20.4% at 487 nm and 12.5% at 470 nm, which are among the highest reported values. Our results offer valuable insights and effective methods for achieving high-performance blue PeLEDs.

3.
Adv Mater ; 36(29): e2400565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768303

ABSTRACT

Perovskite nanograins exceeding the Bohr exciton diameter show great potential for high-performance light-emitting diodes (LEDs) owing to their bandgap homogeneity, spatial charge confinement, and nonlocal interaction. However, it is challenging to directly synthesize proper nanograins along with reduced crystal defects on functional substrate, and the corresponding high-efficiency perovskite LEDs (PeLEDs) have rarely been reported. In this study, crystallization modulation for perovskites with an effective co-additive system, including lithium bromide, p-fluorophenethylammonium bromide, and 18-crown-6, is performed. Furthermore, it is demonstrated that the proposed co-additive system can synergistically retard perovskite crystallization and reduce crystal defects. Consequently, high-quality perovskite nanograin solids (≈22.8 nm) are obtained with a high photoluminescence quantum yield (≈88%). These superior optical properties contribute to developing efficient green PeLEDs with a champion external quantum efficiency (EQE) of 28.4% and an average EQE of 27.1%. The co-additive system can be universally applied to mixed-halide perovskite nanograin LED, presenting a maximum EQE of 24.4%, 21.6%, 17.5%, and 11.1% for the blue device at 496, 488, 478, and 472 nm, respectively, along with a narrow spectral linewidth (17-14 nm) and stable color. These results supplement the research on high-efficiency perovskite nanograin LEDs for multicolor displays and lighting.

4.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456777

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

5.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408023

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

6.
ACS Appl Mater Interfaces ; 15(30): 36716-36723, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477401

ABSTRACT

Tin-based perovskites comprise one of the preferred nontoxic alternatives to Pb-based perovskites due to their desirable optoelectronic properties. However, there remains a crucial stability problem due to the property of Sn2+ oxidation. In this study, we reported stable tin-based perovskite nanocrystals (NCs) using stannous acetate as the Sn2+ source because of its stronger Sn-O bonding. To prevent the oxidation of Sn2+, a thin layer of CsBr coverage was formed in situ; tin-based perovskite NCs, CsxSnBrx+2@CsBr (1 < x < 4), show a high photoluminescence quantum yield (PLQY) of 78.2% and high stability. The measured lifetime of PLQY decrease to half of the initial value is ∼1287 h under ambient conditions and ∼2200 h under a nitrogen atmosphere, respectively. Furthermore, the as-fabricated light-emitting diodes based on CsxSnBrx+2@CsBr NCs as the emitting layer exhibit a maximum luminescence of 16 cd/m2 and an external quantum efficiency of 0.035% with peaks at 451 and 615 nm, corresponding to the emissions of CsBr and CsxSnBrx+2, respectively. This work provided a new way to obtain stable Sn-based perovskite NCs and exhibited their potential for application in white light-emitting diodes (LEDs).

7.
Adv Sci (Weinh) ; 9(20): e2200393, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561063

ABSTRACT

Solution processable quasi-2D (Q-2D) perovskite materials are emerging as a promising candidate for blue light source in full-color display applications due to their good color saturation property, high brightness, and spectral tunability. Herein, an efficient energy cascade channel is developed by introducing sodium bromide (NaBr) in phenyl-butylammonium (PBA)-containing mixed-halide Q-2D perovskites for a blue perovskite light-emitting diode (PeLED). The incorporation of alkali metal contributes to the nucleation and growth of Q-2D perovskites into graded distribution of domains with different layer number . The study of excitation dynamics by transient absorption (TA) spectroscopy confirms that NaBr induces more Q-2D perovskite phases with small n number, providing a graded energy cascade pathway to facilitate more efficient energy transfer processes. In addition, the nonradiative recombination within the Q-2D perovskites is significantly suppressed upon Na+ incorporation, as validated by the trap density estimation. Consequently, the optimized blue PeLEDs manifest a peak external quantum efficiency (EQE) of 7.0% emitting at 486 nm with a maximum luminance of 1699 cd m-2 . It is anticipated that these findings will improve the understanding of alkali-metal-assisted optimization of Q-2D perovskites and pave the way toward high-performance blue PeLEDs.

8.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35564163

ABSTRACT

Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable luminescent layer for perovskite light-emitting diodes (PeLEDs). Electrical tests indicate that the double hole-transport layers (HTLs) played an important role in improving the electrical-to-optical conversion efficiency of PeLEDs due to their cascade-like level alignment. The PeLED based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))-diphenylamine)] (TFB)/poly(9-vinylcarbazole) (PVK) double HTLs produced a high external quantum efficiency (EQE) of 9%, which was improved by approximately 10.9 and 5.14 times when compared with single HTL PVK or the TFB device, respectively. The enhancement of the hole transmission capacity by TFB/PVK double HTLs was confirmed by the hole-only device and was responsible for the dramatic EQE improvement.

9.
ACS Nano ; 15(1): 1486-1496, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33382600

ABSTRACT

Despite the ability to precisely tune their bandgap energies, mixed halide perovskites (MHPs) suffer from significant spectral instability, which obstructs their utilization for the rational design of light-emitting diodes. Here, we investigate the origin of the electroluminescence peak shifts in layered MHPs containing bromide and iodide. X-ray diffraction and steady-state absorption measurements prove effective integration of iodide into the cubic lattice and the spatially uniform distribution of halides in the ambient environment. However, the applied electric field during the device operation is found to drive the systematic halide migration. Quantum mechanical density functional theory calculations reveal that the different activation energies required for directional ion hopping lead to the redistribution of anions. In-depth analyses of the electroluminescence spectra indicate that the spectral shifting rate is dependent on the drift velocity of halides. Finally, it is suggested from our study that the dominant red emission is ascribed to the thermodynamically favorable selective hole injection. Our mechanistic study provides insights into the fundamental reason for the spectral instability of devices based on MHPs.

10.
ACS Appl Mater Interfaces ; 12(32): 36681-36687, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32633130

ABSTRACT

Unbalanced charge injection is one of the major issues that hampers the efficiency of perovskite light-emitting diodes (PeLEDs). Through engineering the device structure with multiple hole transport layers (HTLs), i.e., poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)diphenylamine) (TFB)/poly(9-vinylcarbazole) (PVK) and nickel oxide (NiOx)/TFB/PVK, efficient PeLED devices have been successfully demonstrated. However, in a typical solution-processed PeLED with multiple HTLs, the underlying conjugated HTL could be easily redissolved by the ink of the following one, which not only dramatically deteriorates the electrical property of HTLs but also influences the quality of the top perovskite films. In this work, through inserting a thin atomic layer-deposited aluminum oxide (Al2O3) layer between HTLs and the perovskite layer, an improved interfacial contact can be achieved, which enables us to obtain perovskite films with enhanced characteristics and balanced charge injection in the resultant PeLEDs. In addition, because of the proper refractive index (r), the presence of the Al2O3 layer also favors the light out-coupling of PeLEDs. As a result, we fabricate green PeLEDs with good repeatability and external quantum efficiency of 17.0%, which is approximately 60% higher than that of the control device without Al2O3. Our work provides a promising avenue to enhance interfacial contact between the charge transport layer and perovskite for efficient perovskite-based optoelectronic devices.

11.
Nano Converg ; 6(1): 26, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31392532

ABSTRACT

Metal halide perovskite light-emitting diodes (PeLEDs) are emerging as a promising candidate for next-generation optoelectronic devices. The efficiency of PeLEDs has developed explosively in a short time, but their overall efficiency is still low. This is strongly related to the high refractive indexes of indium-tin-oxide (ITO) and perovskite emitting layers. Various outcoupling strategies are being introduced to outcouple the light trapped inside the layers. However, the proposed methods have experimental challenges that need to be overcome for application to large-area electronics. Based on optical simulations, we demonstrate that the thicknesses of the ITO and perovskite layers are key parameters to improve the outcoupling efficiency of PeLEDs. In addition, the optical energy losses of PeLEDs can be reduced significantly by properly adjusting the thicknesses of the two layers. This leads to outstanding optical performance with a maximum EQE greater than 20% without using any other external outcoupling strategies.

12.
ACS Appl Mater Interfaces ; 10(37): 31366-31373, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30152673

ABSTRACT

Perovskite optoelectronic devices are being regarded as future candidates for next-generation optoelectronic devices. Device performance has been shown to be influenced by the perovskite film, which is determined by the grain size, surface roughness, and film coverage; therefore, developing controllable and highly crystalline perovskite films is pivotal for highly efficient devices. In this work, an innovative bulk heterojunction (BHJ)-assisted grain growth (BAGG) technique was developed to accurately control the quality of perovskite films. By a simple modulation of the polymer-to-PC61BM ratio in the BHJ film, the transition to a complete film phase from the perovskite precursor was accurately regulated, resulting in a controllable perovskite grain growth and high-quality final perovskite film. Moreover, because the BHJ layer could seep deeply into the perovskite active layer through the grain boundaries in the BAGG process, it facilitated the interface engineering and charge transport. The perovskite solar cells containing an optimized CH3NH3PbI3 film presented a high efficiency of 18.38% and fill factor of 83.71%. The perovskite light-emitting diode that contained a nanoscale and uniform CH3NH3PbBr3 film with full coverage presented enhanced emission properties with a brightness value of 1600 cd/m2 at 6.0 V and a luminous efficiency of 0.56 cd/A.

13.
ACS Nano ; 12(4): 3417-3423, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29561134

ABSTRACT

Organic-inorganic hybrid perovskites are emerging as promising emitting materials due to their narrow full-width at half-maximum emissions, color tunability, and high photoluminescence quantum yields (PLQYs). However, the thermal generation of free charges at room temperature results in a low radiative recombination rate and an excitation-intensity-dependent PLQY, which is associated with the trap density. Here, we report perovskite films composed of uniform nanosized single crystals (average diameter = 31.7 nm) produced by introducing bulky amine ligands and performing the growth at a lower temperature. By effectively controlling the crystal growth, we maximized the radiative bimolecular recombination yield by reducing the trap density and spatially confining the charges. Finally, highly bright and efficient green emissive perovskite light-emitting diodes that do not suffer from electroluminescence blinking were achieved with a luminance of up to 55 400 cd m-2, current efficiency of 55.2 cd A-1, and external quantum efficiency of 12.1%.

14.
Nano Lett ; 15(8): 5519-24, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26192740

ABSTRACT

The nanowire and nanorod morphology offers great advantages for application in a range of optoelectronic devices, but these high-quality nanorod arrays are typically based on high temperature growth techniques. Here, we demonstrate the successful room temperature growth of a hybrid perovskite (CH3NH3PbBr3) nanorod array, and we also introduce a new low temperature anion exchange technique to convert the CH3NH3PbBr3 nanorod array into a CH3NH3PbI3 nanorod array while preserving morphology. We demonstrate the application of both these hybrid perovskite nanorod arrays for LEDs. This work highlights the potential utility of postsynthetic interconversion of hybrid perovskites for nanostructured optoelectronic devices such as LEDs, which enables new strategies for the application of hybrid perovskites.

15.
Nano Lett ; 15(4): 2640-4, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25710194

ABSTRACT

Electroluminescence in light-emitting devices relies on the encounter and radiative recombination of electrons and holes in the emissive layer. In organometal halide perovskite light-emitting diodes, poor film formation creates electrical shunting paths, where injected charge carriers bypass the perovskite emitter, leading to a loss in electroluminescence yield. Here, we report a solution-processing method to block electrical shunts and thereby enhance electroluminescence quantum efficiency in perovskite devices. In this method, a blend of perovskite and a polyimide precursor dielectric (PIP) is solution-deposited to form perovskite nanocrystals in a thin-film matrix of PIP. The PIP forms a pinhole-free charge-blocking layer, while still allowing the embedded perovskite crystals to form electrical contact with the electron- and hole-injection layers. This modified structure reduces nonradiative current losses and improves quantum efficiency by 2 orders of magnitude, giving an external quantum efficiency of 1.2%. This simple technique provides an alternative route to circumvent film formation problems in perovskite optoelectronics and offers the possibility of flexible and high-performance light-emitting displays.

SELECTION OF CITATIONS
SEARCH DETAIL