ABSTRACT
The spin-1/2 quantum transverse Ising model, defined on a ladder structure, with nearest-neighbor and four-spin interaction on a plaquette, was studied by using exact diagonalization on finite ladders together with finite-size-scaling procedures. The quantum phase transition between the ferromagnetic and paramagnetic phases has then been obtained by extrapolating the data to the thermodynamic limit. The critical transverse field decreases as the antiferromagnetic four-spin interaction increases and reaches a multicritical point. However, the exact diagonalization approach was not able to capture the essence of the dimer phase beyond the multicritical transition.
ABSTRACT
This work presents the analysis of the stability of magnetic bimerons in a cylindrical nanotube. Through micromagnetic simulations, we study the influence of magnetic and geometrical parameters on the bimeron existence and size. The obtained results allow us to present diagram states showing the stability region of a bimeron as a function of the nanotube's height and radius for different anisotropy and Dzyaloshinskii-Moriya interaction strengths. We also obtain two other magnetic states in the range of parameters where the bimeron is not stable: helicoidal and saturated states.
ABSTRACT
A detailed study of the different structural transitions of the triblock copolymer PEO27-PPO61-PEO27 (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (CP104) by mean of complimentary methods: viscosimetry, densimetry, dynamic light scattering, turbidimetry, polarized microscopy, and rheometry. The hydration profile was calculated through density and sound velocity measurements. It was possible to identify the regions where monomers exist, spherical micelle formation, elongated cylindrical micelles formation, clouding points, and liquid crystalline behavior. We report a partial phase diagram including information for P104 concentrations from 1 × 10-4 to 90 wt.% and temperatures from 20 to 75 °C that will be helpful for further interaction studies with hydrophobic molecules or active principles for drug delivery.
ABSTRACT
Cocrystals are recognized as one of the most efficient approaches to improve aqueous solubility of Biopharmaceutical Classification System, BCS, classes II and IV drugs. Cocrystal discovery and the establishment of experimental conditions suitable for scale-up purposes are some of the main challenges in cocrystal investigation. In this work, the investigation of mechanochemical synthesis of norfloxacin cocrystals with picolinic and isonicotinic acids is performed, leading to the discovery of two new cocrystals of this important BCS class IV antibiotic, which were characterized through thermal, spectral and diffractometric analysis. Norfloxacin apparent aqueous solubility using the cocrystals is also presented, with higher values being obtained for all the investigated systems when compared to the pure drug. Norfloxacin has 3 polymorphs and several solvents/hydrates, which represents a challenge for obtaining pure cocrystal forms from solvent crystallization. This challenge was successfully overcome in this work, as experimental conditions to obtain the pure cocrystals (the new ones and also norfloxacin-nicotinic acid and norfloxacin-saccharin) were established using Crystal16 equipment. This is a crucial step to envisage future scale-up procedures and therefore a valuable information for the pharmaceutical industry.
Subject(s)
Norfloxacin , Water , Solubility , Solvents/chemistry , Water/chemistry , Crystallization/methodsABSTRACT
In this work, we deal with the zero temperature hysteretic properties of iron (Fe) quadrangular nanoprisms and the size conditions underlying magnetic vortex states formation. Different aspect ratios of a square base prism of thickness t with free boundary conditions were considered in order to summarize our results in a proposal of a field-driven magnetic phase diagram where such vortex states are stable along the hysteresis loops. To do that, a Hamiltonian consisting of exchange, magnetostatic, Zeeman and cubic anisotropy energies was considered. The time dynamics at each magnetic field step was performed by solving the time-dependent Landau-Lifshitz-Gilbert differential equation. The micromagnetic simulations were performed using the Ubermag package based on the Object Oriented Micromagnetic Framework (OOMMF). Circular magnetic textures were also characterized by means of topological charge calculations. The aspect ratio dependencies of the coercive force, nucleation and annihilation fields are also analyzed. Computations agree with related experimental observations and other micromagnetic calculations.
ABSTRACT
A graphical analysis of both drug and coformer concentrations contributed by dissolving cocrystals is presented in the context of a simplified cocrystal phase diagram. The conceptual basis and analysis identify parameters that control cocrystal dissolution-drug supersaturation-precipitation (DSP) behavior. The important effects of coformer concentration, cocrystal dose, and cocrystal solubility on drug supersaturation levels are demonstrated and quantified by the DSPindex. While the studies presented rely on high and nonstoichiometric coformer concentrations contributed by the dissolving cocrystals, the concepts and findings can answer the question of whether and how much coformer should be added to cocrystal dissolution media or formulations.
Subject(s)
Solubility , Crystallization , Drug CompoundingABSTRACT
Aqueous two-phase system (ATPS) is a technique used for the separation of biopolymers in two aqueous phases. Some combinations of biopolymers can form a water-in-water (W/W) emulsion due to steric exclusion and thermodynamic incompatibility between these biopolymers under some specific conditions. In this work, the formation of W/W emulsions composed of sodium caseinate (SCN) and locust bean gum (LBG) was evaluated, using NaCl or yerba mate extract as the driving force for the phase separation, which was described by phase's diagrams. Phase diagrams are like fingerprints of ATPS systems, which demonstrate the specific conditions to develop separate phases. Phase diagrams of the two systems show that at the same concentrations of protein and carbohydrate, the addition of NaCl or extract induced the separation of the compounds differently. Salt promotes phase separation by steric exclusion, each phase being rich in one of the polymers. Since extract may also induce other effects, such as the formation of a SCN-extract-LBG complex, migration of LBG to the SCN-rich phase was promoted, modifying the characteristics of the tie lines in the phase diagrams. However, it was feasible to separate the protein in systems containing concentrated phenolic extract, whose incorporation is relevant considering its antioxidant activity.
Subject(s)
Caseins/chemistry , Galactans/chemistry , Mannans/chemistry , Plant Gums/chemistry , Sodium Chloride/chemistry , Nanofibers/chemistry , Polymers/chemistryABSTRACT
Cubosomes are nanoparticles composed of a specific combination of some types of amphiphilic molecules like lipids, such as phytantriol (PHY), and a nonionic polymer, like poloxamer (F127). Cubosomes have a high hydrophobic volume (> 50%) and are good candidates for drug delivery systems. Due to their unique structure, these nanoparticles possess the ability to incorporate highly hydrophobic drugs. A challenge for the encapsulation of hydrophobic molecules is the use of organic solvents in the sample preparation process. In this study, we investigated the structural influence of four different solvents (acetone, ethanol, chloroform, and octane), by means of small-angle X-ray scattering and cryogenic electron microscopy techniques. In the presence of a high amount of acetone and ethanol (1:5 solvent:PHY volumetric ratio), for instance, a cubic-to-micellar phase transition was observed due to the high presence of these two solvents. Chloroform and octane have different effects over PHY-based cubosomes as compared to acetone and ethanol, both of them induced a cubic-to-inverse hexagonal phase transition. Those effects are attributed to the insertion of the solvent in the hydrophobic region of the cubosomes, increasing its volume and inducing such transition. Moreover, a second phase transition from reversed hexagonal-to-inverted micellar was observed for chloroform and octane. The data also suggest that after 24 h of solvent/cubosome incubation, some structural features of cubosomes change as compared to the freshly prepared samples. This study could shed light on drug delivery systems using PHY-based cubosomes to choose the appropriate solvent in order to load the drug into the cubosome.Graphical abstract.
Subject(s)
Fatty Alcohols/chemistry , Micelles , Nanoparticles , Drug Delivery Systems , SolventsABSTRACT
PURPOSE: 5-chloro-3-[phenylsulfonyl] indole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 which has been shown to have a more desirable resistance profile than other NNRTIs in development as HIV prevention strategies. This work involves generation of preformulation data for CSIC and systematic development of a cosolvent system to effectively solubilize this hydrophobic drug candidate. This system was then applied to produce a polymeric thin film solid dosage form for vaginal administration of CSIC for use in prevention of sexual acquisition of HIV. METHODS: Extensive preformulation, formulation development, and film characterization studies were conducted. An HPLC method was developed for CSIC quantification. Preformulation tests included solubility, crystal properties, stability, and drug-excipient compatibility. Cytotoxicity was evaluated using both human epithelial and mouse macrophage cell lines. Ternary phase diagram methodology was used to identify a cosolvent system for CSIC solubility enhancement. Following preformulation evaluation, a CSIC film formulation was developed and manufactured using solvent casting technique. The developed film product was assessed for physicochemical properties, anti-HIV bioactivity, and Lactobacillus biocompatibility during 12-month stability testing period. RESULTS: Preformulation studies showed CSIC to be very stable. Due to its hydrophobicity, a cosolvent system consisting of polyethylene glycol 400, propylene glycol, and glycerin (5:2:1, w/w/w) was developed, which provided a uniform dispersion of CSIC in the film formulation. The final film product met target specifications established for vaginal microbicide application. CONCLUSIONS: The hydrophobic drug candidate CSIC was successfully formulated with high loading capacity in a vaginal film by means of a cosolvent system. The developed cosolvent strategy is applicable for incorporation of other hydrophobic drug candidates in the film platform.
ABSTRACT
For the biophysical study of membranes, a variety of model systems have been used to measure the different parameters and to extract general principles concerning processes that may occur in cellular membranes. However, there are very few reports in which the results obtained with the different models have been compared. In this investigation, we quantitatively compared the phase coexistence in Langmuir monolayers, freestanding bilayers and supported films composed of a lipid mixture of DLPC and DPPC. Two-phase segregation was observed in most of the systems for a wide range of lipid proportions using fluorescence microscopy. The lipid composition of the coexisting phases was determined and the distribution coefficient of the fluorescent probe in each phase was quantified, in order to explore their thermodynamic properties. The comparison between systems was carried out at 30mN/m, since it is accepted that at this or higher lateral pressures, the mean molecular area in bilayers is equivalent to that observed in monolayers. Our study showed that while Langmuir monolayers and giant unilamellar vesicles had a similar phase behavior, supported films showed a different composition of the phases with the distribution coefficient of the fluorescent probe being close to unity. Our results suggest that, in supported membranes, the presence of the rigid substrate may have led to a stiffening of the liquid-expanded phase due to a loss in the degrees of freedom of the lipids as a consequence of the proximity of the solid material.
Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Lipid Bilayers/chemistry , Lipids/chemistry , Phosphatidylcholines/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cell Membrane/chemistry , Fluorescent Dyes/chemistry , Models, Biological , ThermodynamicsABSTRACT
Microemulsions (MEs) are colloidal systems that can be used for drug-delivery and drug-targeting purposes. These systems are able to incorporate drugs modifying bioavailability and stability and reducing toxic effects. The jasmonate compounds belong to a group of plant stress hormones, and the jasmonic acid and its methyl ester derivative have been described as having anticancer activity. However, these compounds are very poorly water-soluble, not allowing administration by an intravenous route without an efficient nanostructured carrier system. In this work, biocompatible MEs of appropriate diameter size for intravenous route administration, loaded and unloaded with methyl dihydrojasmonate (MJ), were developed and described in a pseudo-ternary phase diagram. The compositions of the MEs were carefully selected from their own regions in the pseudo-ternary phase diagram. The formulations were analyzed by light scattering, polarized light microscopy, and X-ray diffraction. Also, a study on rheological profile was performed. The results showed that the droplet size decreased with both MJ incorporation and oil phase/surfactant ratio. All compositions of the studied MEs showed rheological behavior of pseudoplastic fluid and amorphous structures. In the absence of MJ, most of the studied MEs had thixotropic characteristics, which became antithixotropic in the presence of the drug. Almost all MJ-unloaded MEs presented anisotropic characteristics, but some formulations became isotropic, especially in the presence of MJ. The results of this study support the conclusion that the studied system represents a promising vehicle for in vivo administration of the MJ antitumor drug.
Subject(s)
Antineoplastic Agents/administration & dosage , Cyclopentanes/administration & dosage , Drug Delivery Systems , Biocompatible Materials/chemistry , Chemistry, Pharmaceutical , Colloids , Emulsions , Humans , Nanomedicine , Nanostructures/administration & dosage , Nanostructures/chemistry , Nanostructures/ultrastructure , Oils , Rheology , Solubility , WaterABSTRACT
Microemulsão (ME) é um sistema que foi descoberto por Hoar e Schulman no ano de 1943 e que é termodinamicamente estável e isotropicamente translúcido de dois líquidos imiscíveis (óleo/água), estabilizados por um filme interfacial de tensoativos. O estudo de sistemas microemulsionados se baseia nas suas três teorias de formação: (1) teoria da solubilização, (2) teoria da tensão interfacial e (3) teoria termodinâmica. A estrutura formada é influenciada pelas propriedades físico-químicas dos componentes utilizados e da razão entre os componentes. O objetivo desta revisão foi avaliar o estado da arte de sistemas microemulsionados enfatizando uma abordagem teórica. Além disso, os recentes avanços sobre a aplicabilidade clínca e utilização como carreador de moléculas insolúveis foram discutidas.
Microemulsions (ME) are thermodynamically stable and isotropic systems of two immiscible liquids (oil/water), stabilized by an interfacial film of surfactants, discovered by Hoar and Schulman in 1943. The study of ME formation is based on three areas of theory: (1) solubilization, (2) interfacial tension and (3) thermodynamics. ME structures are influenced by the physicochemical properties and proportions of their ingredients. The goal of this review is to assess the state of the art of microemulsified systems, from a theoretical viewpoint. Also, recent progress on their clinical application and use as carriers for insoluble compounds is discussed.
Subject(s)
Carrier Proteins , Emulsions/chemistry , Oils/chemistryABSTRACT
Microemulsions are transparent, homogeneous and thermodynamically stable systems, formed spontaneously under a specific set of experimental conditions from mixtures of water and oil phases stabilized by a surfactant or a mixture of surfactant and cosurfactant. These systems exhibit some unique properties that make them particularly interesting as delivery systems, as much for the oral as for the topical route. In the present work, we have studied the domain of existence of non-ionic microemulsion systems within pseudo-ternary phase diagrams. The results show a large area of microemulsion domain for O/W and W/O microemulsions. Depending on the proportion of components the apparent viscosity of the systems varied significantly. We have found that the presence of ethanol as cosurfactant affects the physical properties particularly the apparent viscosity and relative density. Analysis of the data indicated that the studied systems behave as non-Newtonian pseudoplastic shear-thinning fluids appropriated for pharmaceutical and cosmetic applications.
Microemulsões são sistemas transparentes, homogêneos e termodinamicamente estáveis, formados espontaneamente, sob determinadas condições experimentais, a partir de misturas de água e fase oleosa estabilizadas por tensoativo ou por mistura de tensoativo e cotensoativo. Esses sistemas exibem propriedades diferenciadas, as quais os tornam particularmente interessantes como sistemas de liberação, principalmente pelas vias oral e tópica. Nesse trabalho foi estudado o domínio da existência de sistemas microemulsionados não iônicos, através de diagramas de fase pseudo-ternários. Os resultados mostraram uma grande área de domínio para microemulsões O/A e A/O, onde A e O referem-se a água e óleo, respectivamente. Dependendo das proporções dos componentes, a viscosidade aparente dos sistemas variou significantemente. Foi determinado que a presença de etanol como cotensoativo modificou as propriedades físico-químicas dos sistemas, particularmente da viscosidade aparente e da densidade relativa. A análise dos dados mostrou que o sistema estudado comporta-se como um fluido não-Newtoniano pseudoplástico próprio para aplicações farmacêuticas e cosméticas.