Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; 19(36): e2301750, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127850

ABSTRACT

Potassium-ion battery represents a promising alternative of conventional lithium-ion batteries in sustainable and grid-scale energy storage. Among various anode materials, elemental phosphorus (P) has been actively pursued owing to the ideal natural abundance, theoretical capacity, and electrode potential. However, the sluggish redox kinetics of elemental P has hindered fast and deep potassiation process toward the formation of final potassiation product (K3 P), which leads to inferior reversible capacity and rate performance. Here, it is shown that rational design on black/red P heterostructure can significantly improve K-ion adsorption, injection and immigration, thus for the first time unlocking K3 P as the reversible potassiation product for elemental P anodes. Density functional theory calculations reveal the fast adsorption and diffusion kinetics of K-ion at the heterostructure interface, which delivers a highly reversible specific capacity of 923 mAh g-1 at 0.05 A g-1 , excellent rate capability (335 mAh g-1 at 1 A g-1 ), and cycling performance (83.3% capacity retention at 0.8 A g-1 after 300 cycles). These results can unlock other sluggish and irreversible battery chemistries toward sustainable and high-performing energy storage.

2.
Small ; 19(24): e2208282, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36919577

ABSTRACT

In view of their high lithium storage capability, phosphorus-based anodes are promising for lithium-ion batteries. However, the low reduction potential (0.74 V versus Li+ /Li) of the commonly used ethylene carbonate-based electrolyte does not allow the early formation of a solid electrolyte interphase (SEI) prior to the initial phosphorus alloying reaction (1.5 V versus Li+ /Li). In the absence of a protective SEI, the phosphorus anode develops cracks, creating additional P/electrolyte interfaces. This results in the loss of P and the formation of a discontinuous SEI, all of which greatly reduce the electrochemical performance of the anode. Here, the effect of solvent reduction potential on the structure of the SEI is investigated. It is found that solvents with a high reduction potential, such as fluoroethylene carbonate, decompose to form an SEI concomitantly with the P alloying reaction. This results in a continuous, mechanically robust, and Li3 PO4 -rich SEI with improved Li-ion conductivity. These attributes significantly improve the cyclic stability and rate performance of the phosphorus-based anode.

3.
Adv Mater ; 33(35): e2101259, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34292627

ABSTRACT

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes. Here, a high-performance nanostructured BP-graphite-carbon nanotubes composite (BP/G/CNTs) synthesized using ball-milling method is reported. The BP/G/CNTs anode delivers a high initial capacity of 1375 mA h g-1 at 0.15 A g-1 and maintains 1031.7 mA h g-1 after 450 cycles. Excellent high-rate performance is demonstrated with a capacity of 508.1 mA h g-1 after 3000 cycles at 2 A g-1 . Moreover, for the first time, direct evidence is provided experimentally to present the electrochemical mechanism of BP anodes with three-step lithiation and delithiation using ex situ X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), ex situ X-ray emission spectroscopy, operando XRD, and operando XAS, which reveal the formation of Li3 P7 , LiP, and Li3 P. Furthermore, the study indicates an open-circuit relaxation effect of the electrode with ex situ and operando XAS analyses.

SELECTION OF CITATIONS
SEARCH DETAIL