Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649660

ABSTRACT

Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 µW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of ß-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.

2.
Chemistry ; 30(14): e202303611, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38072832

ABSTRACT

In this concept, we showcase the upsurge in the studies of dynamic ultralong room-temperature phosphorescence (RTP) materials containing inorganic and/or organic components as versatile photo-responsive platforms. The goal is to provide a comprehensive analysis of photo-controllable RTP, and meanwhile delve into the underlying RTP properties of various classes of photochromic materials including metal-organic complexes, organic-inorganic co-crystals, purely organic small molecules and organic polymers. In particular, the design principles governing the integration of the photochromic and RTP moieties within a single material system, and the tuning of dynamic RTP in response to light are emphasized. As such, this concept sheds light on the challenges and opportunities of using these tunable RTP materials for potential applications in optoelectronics, particularly highlighting their use of reversible information encryption, erasable light printing and rewritable smart paper.

3.
Microb Cell Fact ; 22(1): 183, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715250

ABSTRACT

Microbial fuel cell (MFC) is a bio-electrical energy generator that uses respiring microbes to transform organic matter present in sludge into electrical energy. The primary goal of this work was to introduce a new approach to the green electricity generation technology. In this context a total of 6 bacterial isolates were recovered from sludge samples collected from El-Sheikh Zayed water purification plant, Egypt, and screened for their electrogenic potential. The most promising isolates were identified according to 16S rRNA sequencing as Escherichia coli and Enterobacter cloacae, promising results were achieved on using them in consortium at optimized values of pH (7.5), temperature (30°C) and substrate (glucose/pyruvate 1%). Low level red laser (λ = 632.8nm, 8mW) was utilized to promote the electrogenic efficiency of the bacterial consortium, maximum growth was attained at 210 sec exposure interval. In an application of adding standard inoculum (107 cfu/mL) of the photo-stimulated bacterial consortium to sludge based MFC a significant increase in the output potential difference values were recorded, the electricity generation was maintained by regular supply of external substrate. These results demonstrate the future development of the dual role of MFCs in renewable energy production and sludge recycling.


Subject(s)
Electricity , Sewage , RNA, Ribosomal, 16S/genetics , Enterobacter cloacae , Escherichia coli , Pyruvic Acid
4.
Adv Sci (Weinh) ; 10(31): e2300473, 2023 11.
Article in English | MEDLINE | ID: mdl-37661572

ABSTRACT

Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors.


Subject(s)
Neurons , Semiconductors , Stimulation, Chemical , Cell Culture Techniques , Polymers/chemistry
5.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982847

ABSTRACT

Neutrophils release decondensed chromatin or extracellular traps (NETs) in response to various physiological and pharmacological stimuli. Apart from host defensive functions, NETs play an essential role in the pathogenesis of various autoimmune, inflammatory, and malignant diseases. In recent years, studies have been performed on photo-induced NET formation, mainly activated by UV radiation. Understanding the mechanisms of NET release under the influence of UV and visible light is important to control the consequences of the damaging effects of electromagnetic radiation. Raman spectroscopy was applied to record characteristic Raman frequencies of various reactive oxygen species (ROS) and low-frequency lattice vibrational modes for citrulline. NETosis was induced by irradiation with wavelength-switchable LED sources. Fluorescence microscopy was used to visualize and quantify NET release. The ability of five wavelengths of radiation, from UV-A to red light, to induce NETosis was investigated at three different energy doses. We demonstrated, for the first time, that NET formation is activated not only by UV-A but also by three spectra of visible light: blue, green, and orange, in a dose-dependent manner. Using inhibitory analysis, we established that light-induced NETosis proceeds through NADPH oxidase and PAD4. The development of new drugs designed to suppress NETosis, especially when induced by exposure to intense UV and visible light, can help to mitigate light-induced photoaging and other damaging effects of electromagnetic radiation.


Subject(s)
Extracellular Traps , Reactive Oxygen Species , Ultraviolet Rays/adverse effects , Neutrophils , NADPH Oxidases
6.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768606

ABSTRACT

Advancing the understanding of the relationship between perinatal nicotine addiction and the reward mechanism of the brain is crucial for uncovering and implementing new treatments for addiction control and prevention. The mesolimbic pathway of the brain, also known as the reward pathway, consists of two main areas that regulate dopamine (DA) and addiction-related behaviors. The ventral tegmental area (VTA) releases DA when stimulated, causing the propagation of neuronal firing along the pathway. This ends in the release of DA into the extracellular space of the nucleus accumbens (NAc), which is directly modulated by the uptake of DA. Much research has been conducted on the effects of nicotine addiction, but little research has been conducted concerning nicotine addiction and the mesolimbic pathway regarding maturation due to the small brain size. In this study, we apply our novel microstimulation experimental system to rat pups that have been perinatally exposed to nicotine. By using our self-fabricated photo-stimulation (PS) device, we can stimulate the VTA and collect dialysate, which is then used to estimate DA released into the NAc. The proposed platform has demonstrated the potential to monitor neural pathways as the pups mature.


Subject(s)
Nicotine , Tobacco Use Disorder , Rats , Animals , Nicotine/pharmacology , Nicotine/metabolism , Ventral Tegmental Area/metabolism , Tobacco Use Disorder/metabolism , Optogenetics , Nucleus Accumbens/metabolism , Neurons/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism
7.
J Photochem Photobiol B ; 226: 112356, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34801926

ABSTRACT

Oil recovery is a challenge and microbial enhanced oil recovery is an option. We theorized that the use of produced water (PW) with photo-stimulation could influence both production and viscosity of Xanthan gum. This study aimed at the evaluation of the effect of photo-stimulation by λ630 ± 1 ηm LED light on the biosynthesis of Xanthan gum produced by Xanthomonas campestris IBSBF 2103 strain reusing PW of the oil industry. We assessed the effect of photo-stimulation by LED light (λ630 nm) on the biosynthesis of Xanthan gum produced by X. campestris in medium containing produced water. Different energy densities applied during the microbial growth phase were tested. The highest production was achieved when using 12 J/cm2 LED light (p < 0.01). Three protocols were assessed: Non-irradiated (Control), Irradiation with LED light during the growth phase (LEDgrowth) and Irradiation with LED light during both growth and production phases (LED growth+production). Both the amount and viscosity of the xanthan gum was significantly higher (p < 0.01) in the group LEDgrowth+production. The study showed that LED irradiation (λ630 ± 1 ηm) during both the growth and production phases of the biopolymer increased both the production and viscosity of Xanthan gum.


Subject(s)
Viscosity
8.
J Photochem Photobiol B ; 215: 112105, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33406470

ABSTRACT

The expansion of optogenetics via the development and application of new opsins has opened a new world of possibilities as a research and therapeutic tool. Nevertheless, it has also raised questions about the innocuity of using light irradiation on tissues and cells such as those from the Peripheral Nervous System (PNS). Thus, to investigate the potential of PNS being affected by optogenetic light irradiation, rat dorsal root ganglion neurons and Schwann cells were isolated and their response to light irradiation examined in vitro. Light irradiation was delivered as millisecond pulses at wavelengths in the visible spectrum between 627 and 470 nm, with doses ranging between 4.5 and 18 J/cm2 at an irradiance value of 1 mW/mm2. Results show that compared to cultures kept in dark conditions, light irradiation at 470 nm reduced neurite outgrowth in dissociated dorsal root neurons in a dose dependent manner while higher wavelengths had no effect on neuron morphology. Although neurite outgrowth was limited by light irradiation, no signs of cell death or apoptosis were found. On the other hand, peripheral glia, Schwann cells, were insensitive to light irradiation with metabolism, proliferation, and RNA levels of transcription factors c-Jun and krox-20 remaining unaltered following stimulation. As the fields of photostimulation and optogenetics expand, these results indicate the need for consideration to cell type response and stimulation parameters for applications in vitro and further investigation on specific mechanisms driving response.


Subject(s)
Light , Neuronal Outgrowth/radiation effects , Schwann Cells/cytology , Schwann Cells/radiation effects , Animals , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Phenotype , Rats , Rats, Sprague-Dawley , Schwann Cells/metabolism
9.
Brain Pathol ; 30(5): 926-944, 2020 09.
Article in English | MEDLINE | ID: mdl-32497400

ABSTRACT

Emerging evidence from multiple studies indicates that Parkinson's disease (PD) patients suffer from a spectrum of autonomic and respiratory motor deficiencies in addition to the classical motor symptoms attributed to substantia nigra degeneration of dopaminergic neurons. Animal models of PD show a decrease in the resting respiratory rate as well as a decrease in the number of Phox2b-expressing retrotrapezoid nucleus (RTN) neurons. The aim of this study was to determine the extent to which substantia nigra pars compact (SNc) degeneration induced RTN biomolecular changes and to identify the extent to which RTN pharmacological or optogenetic stimulations rescue respiratory function following PD-induction. SNc degeneration was achieved in adult male Wistar rats by bilateral striatal 6-hydroxydopamine injection. For proteomic analysis, laser capture microdissection and pressure catapulting were used to isolate the RTN for subsequent comparative proteomic analysis and Ingenuity Pathway Analysis (IPA). The respiratory parameters were evaluated by whole-body plethysmography and electromyographic analysis of respiratory muscles. The results confirmed reduction in the number of dopaminergic neurons of SNc and respiratory rate in the PD-animals. Our proteomic data suggested extensive RTN remodeling, and that pharmacological or optogenetic stimulations of the diseased RTN neurons promoted rescued the respiratory deficiency. Our data indicate that despite neuroanatomical and biomolecular RTN pathologies, that RTN-directed interventions can rescue respiratory control dysfunction.


Subject(s)
Neurons/metabolism , Parkinson Disease/metabolism , Respiratory Insufficiency/metabolism , Animals , Brain/metabolism , Brain/physiology , Corpus Striatum/metabolism , Disease Models, Animal , Gene Expression Profiling , Homeodomain Proteins/metabolism , Homeodomain Proteins/physiology , Male , Neural Pathways/physiology , Neurons/physiology , Pars Compacta/metabolism , Pars Compacta/physiology , Proteomics , Rats , Rats, Wistar , Respiration , Respiratory Insufficiency/therapy , Substantia Nigra/metabolism , Transcription Factors/metabolism , Transcription Factors/physiology
10.
Front Neurosci ; 10: 101, 2016.
Article in English | MEDLINE | ID: mdl-27013962

ABSTRACT

Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

11.
Caspian J Intern Med ; 2(1): 178-82, 2011.
Article in English | MEDLINE | ID: mdl-24024011

ABSTRACT

BACKGROUND: An imbalance of the cerebrovascular response during functional activation of the brain has been postulated as a factor in the pathophysiology of migraine. The purpose of this study was to determine the transcranial doppler sonography (TDS) diagnostic value for the cerebral flow velocity changes in the interictal phase of classic migraine. METHODS: This study was carried out on 46 patients (23 cases and 23 controls). We used Doppler instrument via trans-temporal window and detected middle cerebral artery, anterior cerebral artery and posterior cerebral artery by 2 MHz probe. The flow velocity in the posterior cerebral artery before, during and immediately after stimulation was recorded. Stimulation was done using a flickering light in 100 seconds. RESULTS: At the baseline, the middle cerebral artery had more peak systolic velocity in migraineurs than the control group. Although peak systolic velocity changes in the mid-photic period is not statistically significant. On the other hand, post-photic peak systolic velocity increased significantly. The diagnostic accuracy of the peak systolic volume (PSV) changes in the posterior cerebral artery (PCA) for the migraine was 72.3%. CONCLUSION: This stimulation we found altered cerebral vasomotor reactivity in the interictal phase in migraineurs with visual aura. This seemed to be an unavoidable hindrance for the wider implementation of functional TCD in diagnostic work up of migraine patients.

12.
Article in English | MEDLINE | ID: mdl-19225575

ABSTRACT

The mammalian neocortex has a remarkable ability to precisely reproduce behavioral sequences or to reliably retrieve stored information. In contrast, spiking activity in behaving animals shows a considerable trial-to-trial variability and temporal irregularity. The signal propagation and processing underlying these conflicting observations is based on fundamental neurophysiological processes like synaptic transmission, signal integration within single cells, and spike formation. Each of these steps in the neuronal signaling chain has been studied separately to a great extend, but it has been difficult to judge how they interact and sum up in active sub-networks of neocortical cells. In the present study, we experimentally assessed the precision and reliability of small neocortical networks consisting of trans-columnar, intermediate-range projections (200-1000 mum) on a millisecond time-scale. Employing photo-uncaging of glutamate in acute slices, we activated a number of distant presynaptic cells in a spatio-temporally precisely controlled manner, while monitoring the resulting membrane potential fluctuations of a postsynaptic cell. We found that signal integration in this part of the network is highly reliable and temporally precise. As numerical simulations showed, the residual membrane potential variability can be attributed to amplitude variability in synaptic transmission and may significantly contribute to trial-to-trial output variability of a rate signal. However, it does not impair the temporal accuracy of signal integration. We conclude that signals from intermediate-range projections onto neocortical neurons are propagated and integrated in a highly reliable and precise manner, and may serve as a substrate for temporally precise signal transmission in neocortical networks.

13.
Indian J Dermatol ; 54(4): 323-9, 2009.
Article in English | MEDLINE | ID: mdl-20101331

ABSTRACT

BACKGROUND: Generally, the significances of laser photo stimulation are now accepted, but the laser light facilitates wound healing and tissue repair remains poorly understood. AIMS: We have examined the hypothesis that the laser photo stimulation can enhance the collagen production in diabetic wounds using the excision wound model in the Wistar rat model. METHODS: The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The study group (N = 24) wound was treated with 632.8 nm He-Ne laser at a dose of 3-9 J/cm(2) for 5 days a week until the wounds healed completely. The control group was sham irradiated. RESULT: A significant increase in the hydroxyproline content and reduction in the wound size were observed in the study group. The pro-healing actions seem to be due to increased collagen deposition as well as better alignment and maturation. CONCLUSION: The biochemical analysis and clinical observation suggested that 3-6 J/cm(2) laser photo stimulation facilitates the tissue repair process by accelerating collagen production in diabetic wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL