Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Chemosphere ; 363: 142839, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019181

ABSTRACT

The compound 1,2-dichloroethane (1,2-DCA), a persistent and ubiquitous pollutant, is often found in groundwater and can strongly affect the ecological environment. However, the extreme bio-impedance of C-Cl bonds means that a high energy input is needed to drive biological dechlorination. Biotechnology techniques based on microbial photoelectrochemical cell (MPEC) could potentially convert solar energy into electricity and significantly reduce the external energy inputs currently needed to treat 1,2-DCA. However, low electricity-generating efficiency at the anode and sluggish bioreaction kinetics at the cathode limit the application of MPEC. In this study, a g-C3N4/Blue TiO2-NTA photoanode was fabricated and incorporated into an MPEC for 1,2-DCA removal. Optimal performance was achieved when Blue TiO2 nanotube arrays (Blue TiO2-NTA) were loaded with graphitic carbon nitride (g-C3N4) 10 times. The photocurrent density of the g-C3N4/Blue TiO2-NTA composite electrode was 2.48-fold higher than that of the pure Blue TiO2-NTA electrode under light irradiation. Furthermore, the MPEC equipped with g-C3N4/Blue TiO2-NTA improved 1,2-DCA removal efficiency by 45.21% compared to the Blue TiO2-NTA alone, which is comparable to that of a microbial electrolysis cell. In the modified MPEC, the current efficiency reached 69.07% when the light intensity was 150 mW cm-2 and the 1,2-DCA concentration was 4.4 mM. The excellent performance of the novel MPEC was attributed to the efficient direct electron transfer process and the abundant dechlorinators and electroactive bacteria. These results provide a sustainable and cost-effective strategy to improve 1,2-DCA treatment using a biocathode driven by a photoanode.

2.
ChemSusChem ; : e202400611, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38932662

ABSTRACT

Dye-sensitized photoelectrochemical cells can enable the production of molecules currently accessible through energetically demanding syntheses. Copper(I)-based dyes represent electronically tunable charge transfer and separation systems. Herein, we report a Cu(I)-bisdiimine donor-chromophore-acceptor dye with an absorbance in the visible part of the solar spectrum composed of a phenothiazine electron donor, and dipyrido[3,2-a:2',3'-c]phenazine electron acceptor. This complex is incorporated onto a zinc oxide nanowire semiconductor surface effectively forming a photoanode that is characterized spectroscopically and electrochemically. We investigate the photo-oxidation of hydroquinone, and the photosensitization of 2,2,6,6-tetramethylpiperidine-1-oxyl and N-hydroxyphthalimide for the oxidation of furfuryl alcohol to furfuraldehyde, resulting in near quantitative conversions, with poor selectivity to the alcohol.

3.
Environ Technol ; : 1-14, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860422

ABSTRACT

Hydrogen (H2) remains a pivotal clean energy source, and the emergence of Solar-powered Microbial Photoelectrochemical Cells (MPECs) presents promising avenues for H2 production while concurrently aiding organic matter degradation. This study introduces an MPEC system employing a g-C3N4/CQDs/BiOBr photocathode and a bioanode, successfully achieving simultaneous H2 production and sludge reduction. The research highlights the effective formation of a Z-type heterojunction in the g-C3N4/CQDs/BiOBr photocathode, substantially enhancing the photocurrent response under light conditions. Operating at - 0.4 V versus RHE, it demonstrated a current density of - 3.25 mA·cm-2, surpassing that of g-C3N4/BiOBr (-2.25 mA·cm-2) by 1.4 times and g-C3N4 (-2.04 mA·cm-2) by 1.6 times. When subjected to visible light irradiation and a 0.8 V applied bias voltage, the MPEC system achieved a current density of 1.0 mA·cm-2. The cumulative H2 production of the MPEC system reached 8.9 mL, averaging a production rate of 0.13 mL·h-1. In the anode chamber, the degradation rates of total chemical oxygen demand (TCOD), soluble chemical oxygen demand (SCOD), total suspended solids (TSS), volatile suspended solids (VSS), proteins, polysaccharides, and volatile fatty acids (VFA) in the sludge were recorded at 57.18%, 82.64%, 64.98%, 86.39%, 42.81%, 67.34%, and 29.01%, respectively.

4.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747220

ABSTRACT

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

5.
Environ Sci Technol ; 58(23): 10072-10083, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38810213

ABSTRACT

The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 µmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 µmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.


Subject(s)
Electrodes , Electrons , Hydrogen Peroxide , Oxygen , Protons , Oxygen/chemistry , Hydrogen Peroxide/chemistry , Electrochemical Techniques
6.
Small ; : e2401123, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659372

ABSTRACT

Matching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm-thick yields an optimum photocurrent of 116 µA cm-2 at 1.23 V versus RHE, comparable to most micrometer-thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe-layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm-2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer-thick CN layer, providing new insights into CN in the application of energy and environment-related fields.

7.
Heliyon ; 10(3): e24491, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318042

ABSTRACT

In this paper, we outline the development of stoichiometric chalcostibite, CuSbS2 thin films, from a single bath by pulse electrodeposition for its application as a photocathode in photoelectrochemical cells (PEC). The Cu/Sb precursor molar ratio of the deposition bath was varied to obtain stoichiometric CuSbS2 thin films. The optimized deposition and dissolution potentials were -0.72 V and -0.1 V vs saturated calomel electrode, respectively. The formation of CuSbS2 was analyzed using different characterization tools. X-ray diffraction and Raman results showed the formation of the pure chalcostibite phase from a precursor bath with molar ratio Cu/Sb = 0.41. The heterostructure CuSbS2/CdS/Pt was tested as a photocathode in the PEC. The energy positions of the conduction and valence bands were estimated from the Mott Schottky plots. The conduction band and valence band offset of CuSbS2/CdS heterojunction were 0.1 eV and 1.04 eV, respectively. The electric field created in the junction reduced the recombination of the electron/hole pairs and improved charge transfer in the interface. The heterostructure CuSbS2/CdS/Pt demonstrated an improved photocurrent density of 3.4 mA cm-2 at 0 V vs reversible hydrogen electrode. The PEC efficiency obtained from the CuSbS2/CdS heterojunction was 0.56 %. Therefore, we demonstrated the feasibility of an inexpensive technique like electrodeposition for the development of an efficient earth-abundant photocathode.

8.
Article in English | MEDLINE | ID: mdl-38191732

ABSTRACT

Photoelectrochemical setups based on semiconductor photoelectrodes are known for their effectiveness in wastewater treatment, powered by solar energy, which is a renewable and sustainable source. These systems require semiconductor photocatalysts with excellent light-absorbing properties and high stability in aqueous environments. In this regard, silicon is highly investigated in solar cells thanks to its narrow bandgap, making it a potential solar harvester. Metal oxides stand as promising semiconductors, which are non-toxic and thermodynamically stable. In this work, two high-efficiency silicon-based cells have been investigated via Solar Cell Capacitance Simulator (SCAPS-1D) software. Thickness and doping concentration, of each layer, have been scrutinized for multiple buffer propositions to investigate the physical feasibility and optimal values allowing maximal light harvesting. It was found that the overall cell performance is influenced by extremely high doping concentrations for some layers. The effect of temperature was investigated as well at temperatures ranging from 300 to 350 K; it was discovered that the cell demonstrates great performance at the ambient temperature. A maximum solar efficiency of about 25.44% was calculated. Our findings build the path towards fabricating highly efficient Si-based solar cells for photoelectrochemical wastewater treatment.

9.
Bioresour Technol ; 394: 130206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122998

ABSTRACT

Biophotovoltaic (BPV) devices are a potential decentralized and environmentally friendly energy source that harness solar energy through photosynthesis. BPV devices are self-regenerating, promising long-term usability. A practical strategy for enhancing BPV performance is to systematically screen for highly exoelectrogenic algal strains capable of generating large electric current density. In this study, a previously uncharacterized green algal strain - Parachlorella kessleri MACC-38 was found to generate over 340 µA mg-1 Chl cm-2. This output is approximately ten-fold higher than those of Chlamydomonas reinhardtii and Chlorella species. The current production of MACC-38 primarily originates from photosynthesis, and the strain maintains its physiological integrity throughout the process. MACC-38 exhibits unique traits such as low extracellular O2 and Fe(III) reduction, substantial copper (II) reduction, and significant extracellular acidification during current generation, contributing to its high productivity. The exoelectrogenic and growth characteristics of MACC-38 suggest that it could markedly boost BPV efficiency.


Subject(s)
Chlamydomonas reinhardtii , Chlorella , Ferric Compounds , Photosynthesis
10.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37512647

ABSTRACT

Herein, we successfully fabricated an Al-doped α-Ga2O3 nanorod array on FTO using the hydrothermal and post-annealing processes. To the best of our knowledge, it is the first time that an Al-doped α-Ga2O3 nanorod array on FTO has been realized via a much simpler and cheaper way than that based on metal-organic chemical vapor deposition, magnetron sputtering, molecular beam epitaxy, and pulsed laser deposition. And, a self-powered Al-doped α-Ga2O3 nanorod array/FTO photodetector was also realized as a photoanode at 0 V (vs. Ag/AgCl) in a photoelectrochemical (PEC) cell, showing a peak responsivity of 1.46 mA/W at 260 nm. The response speed of the Al-doped device was 0.421 s for rise time, and 0.139 s for decay time under solar-blind UV (260 nm) illumination. Compared with the undoped device, the responsivity of the Al-doped device was ~5.84 times larger, and the response speed was relatively faster. When increasing the biases from 0 V to 1 V, the responsivity, quantum efficiency, and detectivity of the Al-doped device were enhanced from 1.46 mA/W to 2.02 mA/W, from ~0.7% to ~0.96%, and from ~6 × 109 Jones to ~1 × 1010 Jones, respectively, due to the enlarged depletion region. Therefore, Al doping may provide a route to enhance the self-powered photodetection performance of α-Ga2O3 nanorod arrays.

11.
Angew Chem Int Ed Engl ; 62(40): e202308956, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37493175

ABSTRACT

Bio-inspired molecular-engineered systems have been extensively investigated for the half-reactions of H2 O oxidation or CO2 reduction with sacrificial electron donors/acceptors. However, there has yet to be reported a device for dye-sensitized molecular photoanodes coupled with molecular photocathodes in an aqueous solution without the use of sacrificial reagents. Herein, we will report the integration of SnIV - or AlIII -tetrapyridylporphyrin (SnTPyP or AlTPyP) decorated tin oxide particles (SnTPyP/SnO2 or AlTPyP/SnO2 ) photoanode with the dye-sensitized molecular photocathode on nickel oxide particles containing [Ru(diimine)3 ]2+ as the light-harvesting unit and [Ru(diimine)(CO)2 Cl2 ] as the catalyst unit covalently connected and fixed within poly-pyrrole layer (RuCAT-RuC2 -PolyPyr-PRu/NiO). The simultaneous irradiation of the two photoelectrodes with visible light resulted in H2 O2 on the anode and CO, HCOOH, and H2 on the cathode with high Faradaic efficiencies in purely aqueous conditions without any applied bias is the first example of artificial photosynthesis with only two-electron redox reactions.

12.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110946

ABSTRACT

Photoelectrochemical (PEC) H2 production from water using solar energy is an ideal and environmentally friendly process. CuInS2 is a p-type semiconductor that offers many advantages for PEC H2 production. Therefore, this review summarizes studies on CuInS2-based PEC cells designed for H2 production. The theoretical background of PEC H2 evolution and properties of the CuInS2 semiconductor are initially explored. Subsequently, certain important strategies that have been executed to improve the activity and charge-separation characteristics of CuInS2 photoelectrodes are examined; these include CuInS2 synthesis methods, nanostructure development, heterojunction construction, and cocatalyst design. This review helps enhance the understanding of state-of-the-art CuInS2-based photocathodes to enable the development of superior equivalents for efficient PEC H2 production.

13.
Angew Chem Int Ed Engl ; 62(7): e202215227, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36542061

ABSTRACT

The electrochemical activation of CuInS2 /MoSx for photoelectrochemical (PEC) H2 production was revealed for the first time through in operando Raman spectroscopy. During the activation process, the initial metallic MoSx phase was transformed to semiconducting MoSx , which facilitates charge carrier transfer between CuInS2 and MoSx . Ex situ X-ray photoelectron spectroscopy and Raman spectroscopy suggest the existence of MoO3 after the activation process. However, apart from contradicting these results, in operando Raman spectroscopy revealed some of the intermediate steps of the activation process.

14.
Membranes (Basel) ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36557096

ABSTRACT

Based on the LiLaTiO3 compound, a ceramic membrane for a photoelectrochemical cell was created. The microstructure, phase composition, and conductivity of a semiconductor photoelectrode and a ceramic membrane were studied by using various experimental methods of analysis. A ceramic Li conducting membrane that consisted of Li0.56La0.33TiO3 was investigated in solutions with different pH values. The fundamental possibility of creating a photoelectrochemical cell while using this membrane was shown. It was found that the lithium-conductive membrane effectively works in the photoelectrochemical system for hydrogen evolution and showed a good separating ability. When using a ceramic membrane, the pH in the cathode and anode chambers of the cell was stable during 3 months of testing. The complex impedance method was used to study the conductive ceramic membrane in a cell with separated cathode and anode chambers at different pH values of the electrolyte. The ceramic membrane shows promise for use in photoelectrochemical systems, provided that its resistivity is reduced (due to an increase in area and a decrease in thickness).

15.
Nanomicro Lett ; 14(1): 209, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36315297

ABSTRACT

A rational regulation of the solar water splitting reaction pathway by adjusting the surface composition and phase structure of catalysts is a substantial approach to ameliorate the sluggish reaction kinetics and improve the energy conversion efficiency. In this study, we demonstrate a nanocrystalline iron pyrophosphate (Fe4(P2O7)3, FePy)-regulated hybrid overlayer with amorphous iron phosphate (FePO4, FePi) on the surface of metal oxide nanostructure with boosted photoelectrochemical (PEC) water oxidation. By manipulating the facile electrochemical surface treatment followed by the phosphating process, nanocrystalline FePy is localized in the FePi amorphous overlayer to form a heterogeneous hybrid structure. The FePy-regulated hybrid overlayer (FePy@FePi) results in significantly enhanced PEC performance with long-term durability. Compared with the homogeneous FePi amorphous overlayer, FePy@FePi can improve the charge transfer efficiency more significantly, from 60% of FePi to 79% of FePy@FePi. Our density-functional theory calculations reveal that the coexistence of FePi and FePy phases on the surface of metal oxide results in much better oxygen evolution reaction kinetics, where the FePi was found to have a typical down-hill reaction for the conversion from OH* to O2, while FePy has a low free energy for the formation of OH*.

16.
Nanotechnology ; 34(2)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36191561

ABSTRACT

Although black phosphorus analogue, bismuthene, has been extensively investigated in recent years, yet the investigation into the photoelectronic devices is still in its infancy. In this contribution, uniform zero-dimensional (0D) bismuth (Bi) quantum dots (QDs) with different sizes were successfully synthesized by a simple solvothermal method. The as-synthesized 0D Bi QDs serve as working electrode materials by a direct deposition for photoelectrochemical (PEC)-type photodetection. The PEC results demonstrate that the as-fabricated 0D Bi QD-based electrode not only possess suitable self-powered broadband photoresponse, but also displays excellent photodetection performance. Under simulated light, the photocurrent density and photoresponsivity of the as-fabricated 0D Bi QD-based electrode can reach 2690 nA cm-2, and 22.0µA W-1, respectively. In addition, the as-prepared Bi QDs with the average diameter of 17 nm exhibit the best PEC photoresponse behavior in the studied size range of Bi QDs, mainly ascribed to the synergistic effect of suitable band gap and accessible active sites. It is anticipated that the uniform Bi QDs can be served as building blocks for a variety of photoelectronic devices, further expanding the application prospects of bismuthene, and can provide in-depth acknowledge on the performance optimization of monoelement Bi-based optical devices.

17.
ACS Appl Mater Interfaces ; 14(22): 25326-25336, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35611991

ABSTRACT

In 2017, we reported a dye-sensitized, photoelectrolysis cell consisting of fluorine-doped tin oxide (FTO)-coated glass covered by SnO2 nanoparticles coated with N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide (PMPDI) dye and then a photoelectrochemically deposited CoOx water oxidation catalyst (WOCatalyst), FTO/nano-SnO2/PMPDI/CoOx. This system employed nanostructured SnO2 stabilized by a polyethyleneglycol bisphenol A epichlorohydrin (PEG-BAE) copolymer and other C-containing additives based on a literature synthesis to achieve a higher surface area and thus greater PMPDI dye absorption and resultant light collection. Surprisingly, the addition of the well-established WOCatalyst CoOx resulted in a decrease in the photocurrent, an unexpected "anti-catalyst" effect. Two primary questions addressed in the present study are (1) what is the source of this "anti-catalyst" effect? and (2) are the findings of broader interest? Reflection on the synthesis of nano-SnO2 stabilized by PEG-BAE, and the large, ca. 10:1 ratio of C to Sn in synthesis, led to the hypothesis that even the annealing step at 450 °C in of the FTO/SnO2 anode precursors was unlikely to remove all the carbon initially present. Indeed, residual carbon impurities are shown to be the culprit in the presently observed "anti-catalyst" effect. The implication and anticipated broader impact of the results of answering the two abovementioned questions are also presented and discussed along with a section entitled "Perspective and Suggestions for the Field Going Forward."

18.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563164

ABSTRACT

A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65-90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10-35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.


Subject(s)
Electrons , Photosystem I Protein Complex , Electron Transport , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Reducing Agents
19.
Angew Chem Int Ed Engl ; 61(21): e202200175, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35266261

ABSTRACT

This work reports an aqueous dye-sensitized photoelectrochemical cell (DSPEC) capable of oxidizing glycerol (an archetypical biobased compound) coupled with H2 production. We employed a mesoporous TiO2 photoanode sensitized with the high potential thienopyrroledione-based dye AP11, encased in an acetonitrile-based redox-gel that protects the photoanode from degradation by aqueous electrolytes. The use of the gel creates a biphasic system with an interface at the organic (gel) electrode and aqueous anolyte. Embedded in the acetonitrile gel is 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), acting as both a redox-mediator and a catalyst for oxidative transformations. Upon oxidation of TEMPO by the photoexcited dye, the in situ generated TEMPO+ shuttles through the gel to the acetonitrile-aqueous interface, where it acts as an oxidant for the selective conversion of glycerol to glyceraldehyde. The introduction of the redox-gel layer affords a 10-fold increase in the conversion of glycerol compared to the purely aqueous system. Our redox-gel protected photoanode yielded a stable photocurrent over 48 hours of continuous operation, demonstrating that this DSPEC is compatible with alkaline aqueous reactions.


Subject(s)
Coloring Agents , Solar Energy , Acetonitriles , Coloring Agents/chemistry , Cyclic N-Oxides , Glycerol , Oxidation-Reduction , Photosynthesis , Water/chemistry
20.
ACS Appl Mater Interfaces ; 14(12): 14137-14145, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35291762

ABSTRACT

We demonstrated how the photoelectrochemical (PEC) performance was enhanced by conformal deposition of an amorphous molybdenum sulfide (a-MoSx) thin film on a nanostructured surface of black Si using atomic layer deposition (ALD). The a-MoSx is found to predominantly consist of an octahedral structure (S-deficient metallic phase) that exhibits high electrocatalytic activity for the hydrogen evolution reaction with a Tafel slope of 41 mV/dec in an acid electrolyte. The a-MoSx has a smaller work function (4.0 eV) than that of crystalline 2H-MoS2 (4.5 eV), which induces larger energy band bending at the p-Si surface, thereby facilitating interface charge transfer. These features enabled us to achieve an outstanding kinetic overpotential of ∼0.2 V at 10 mA/cm2 and an onset potential of 0.27 V at 1 mA/cm2. Furthermore, the a-MoSx layer provides superior protection against corrosion of the Si surface, enabling long-term PEC operation of more than 50 h while maintaining 87% or more performance. This work highlights the remarkable advantages of the ALD a-MoSx layer and leads to a breakthrough in the architectural design of PEC cells to ensure both high performance and stability.

SELECTION OF CITATIONS
SEARCH DETAIL