Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Type of study
Publication year range
1.
Chemosphere ; 363: 142891, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025312

ABSTRACT

Omnipresent in terrestrial ecosystems, microplastics (MPs) represent a hazard to soil biota and human health, while their relationship with other environmental contaminants remains poorly acknowledged. This study investigated MPs prevalence in (sub)urban soils of Serbia and its impact on Cd, As, and Pb mobility in the soil-medicinal plant Capsella bursa-pastoris (L.) Medik system. Soil physicochemical parameters (pH, Eh, SOM, and texture) were analyzed alongside the Cd, As, and Pb pseudo-total (aqua regia) and phytoavailable (EDTA) contents. Toxic elements' concentrations in soil fractions and C. bursa-pastoris roots and shoots were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Pseudo-total Cd, As, and Pb contents in soils ranged from 0.16 to 2.23 µg g-1, 2.00-36.92 µg g-1, and 0.18-65.54 µg g-1, respectively. Using an optimized density separation method with 30% H2O2 and 5% NaClO, we found an average abundance of 489 MPs per kg of soil. ATR-FTIR spectroscopy confirmed the presence of seven polymer types, whereby the main contributors were polystyrene (PS) - 28.57% and cardanol prepolymer (PCP) - 23.81%. The dominant associated pollution sources were road networks and industrial activities. Spearman correlation analysis revealed the interconnection among soil MPs, physicochemical variables, and Cd, As, and Pb mobility. We identified significant positive correlations between MPs' abundance and phytoavailable concentrations of Cd, As, and Pb (ρ = 0.82, 0.95, and 0.63). Moreover, soil MPs strongly positively correlated with Cd contents in roots (ρ = 0.61) and shoots of C. bursa-pastoris (ρ = 0.65). These findings underscore the synergistic effects of MPs and toxic metals in urban environmental pollution, with possible implications for human health. Further research is required to deepen our understanding of the impact of MPs on element mobility in complex plant-soil systems and to elucidate the broader consequences of induced alterations.


Subject(s)
Cadmium , Environmental Monitoring , Lead , Microplastics , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Serbia , Lead/metabolism , Lead/analysis , Cadmium/metabolism , Cadmium/analysis , Microplastics/metabolism , Microplastics/analysis , Soil/chemistry , Arsenic/metabolism , Arsenic/analysis
2.
Ecotoxicol Environ Saf ; 271: 115935, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211514

ABSTRACT

The accumulation of microplastics in agricultural soil brings unexpected adverse effects on crop growth and soil quality, which is threatening the sustainability of agriculture. Biochar is an emerging soil amendment material of interest as it can remediate soil pollutants. However, the mechanisms underlying biochar alleviated the toxic effects of microplastics in crops and soil were largely unknown. Using a common economic crop, peanut as targeted species, the present study evaluated the plant physiologica and molecular response and rhizosphere microbiome when facing microplastic contamination and biochar amendment. Transcriptome and microbiome analyses were conducted on peanut root and rhizosphere soil treated with CK (no microplastic and no biochar addition), MP (1.5% polystyrene microplastic addition) and MB (1.5% polystyrene microplastic+2% peanut shell biochar addition). The results indicated that microplastics had inhibitory effects on plant root development and rhizosphere bacterial diversity and function. However, biochar application could significantly promote the expressions of key genes associated with antioxidant activities, lignin synthesis, nitrogen transport and energy metabolism to alleviate the reactive oxygen species stress, root structure damage, nutrient transport limitation, and energy metabolism inhibition induced by microplastic contamination on the root. In addition, the peanut rhizosphere microbiome results showed that biochar application could restore the diversity and richness of microbial communities inhibited by microplastic contamination and promote nutrient availability of rhizosphere soil by regulating the abundance of nitrogen cycling-related and organic matter decomposition-related microbial communities. Consequently, the application of biochar could enhance root development by promoting oxidative stress resistance, nitrogen transport and energy metabolism and benefit the rhizosphere microecological environment for root development, thereby improved the plant-soil system health of microplastic-contaminated agroecosystem.


Subject(s)
Microplastics , Soil , Soil/chemistry , Microplastics/toxicity , Plastics , Rhizosphere , Polystyrenes , Charcoal/pharmacology , Arachis , Nitrogen/analysis , Soil Microbiology
3.
Sci Total Environ ; 912: 169058, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070573

ABSTRACT

The ability of microplastics (MPs) to interact with environmental pollutants is currently of great concern due to the increasing use of plastic. Agricultural soils are sinks for multipollutants and the safety of biodegradable MPs in field conditions is questioned. However, still few studies have investigated the interactive effects between MPs and metals on the soil-plant system with agricultural soil and testing crops for human consumption. In this work, we tested the effect on soil and plant parameters of two common MPs, non-degradable plastic low-density polyethylene and biodegradable polymer polylactic acid at two different sizes (<250 µm and 250-300 µm) in association with arsenic (As). Lettuce (Lactuca sativa L.) was used as a model plant in a small-scale experiment lasting 60 days. Microplastics and As explained 12 % and 47 % of total variance, respectively, while their interaction explained 21 %, suggesting a higher toxic impact of As than MPs. Plant growth was promoted by MPs alone, especially when biodegradable MPs were added (+22 %). However, MPs did not affect nutrient concentrations in roots and leaves. The effect of MPs on enzyme activities was variable depending on the time of exposure (with larger effects immediately after exposure), the type and size of the MPs. On the contrary, the co-application of MP and As, although it did not change the amount of bioavailable As in soil in the short and medium term, it resulted in a significant decrease in lettuce biomass (-19 %) and root nutrient concentrations, especially when polylactic acid was applied. Generally, MPs in association with As determined the plant-soil toxicity. This work provides insights into the risk of copollution of MPs and As in agricultural soil and its phytotoxic effect for agricultural crops. However, the mechanisms of the joint effect of MP and As on plant toxicity need further investigation, especially under field conditions and in long-term experiments.


Subject(s)
Arsenic , Soil , Humans , Microplastics , Plastics , Agriculture , Crops, Agricultural , Lactuca , Polyethylene
4.
J Environ Manage ; 347: 119121, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37778064

ABSTRACT

Effective management of macronutrients is pivotal in the optimization and provisioning of ecosystem services in grassland areas, particularly in degraded grasslands. In such instances where mowing and nitrogen (N) fertilization have emerged as predominant management strategies, nutrient management is especially important. However, the precise effects of these concurrent practices on the distribution of macronutrients in plant-soil systems remain unclear. Here we evaluated the effects of 12 years of N addition (2, 10, and 50 g N m-2 year-1) and mowing on the concentrations and pools of six macronutrients (i.e., N; phosphorus P; sulfur S, calcium Ca, magnesium Mg, and potassium K) in three plant components (aboveground plants, litter, and belowground roots) at the community level and in the soil in a typical steppe in Inner Mongolia. Our results revealed that N addition generally raised the N concentration in the entire plant-soil system, regardless of whether plots were mowed. Higher N addition (10 and 50 g N m-2 year-1) also led to higher concentrations of P (+22%, averaging two N addition rates), S (+16%), K (+22%), Ca (+22%), and Mg (+24%) in plants but lower concentrations of these nutrients in the litter. Similar decreases in K (-9%), Ca (-46%), and Mg (-8%) were observed in the roots. In light of the observed increases in vegetation biomass and the lack of pronounced changes in soil bulk density, we found that the ecosystem N enrichment resulted in increased pools of all measured macronutrients in plants, litter, and roots (with the exception of Ca in the roots) while concurrently decreased the pools of P (-20%, averaging two higher N addition rates), S (-12%), K (-10%), Ca (-37%), and Mg (-19%) in the soil, with no obvious effect of the mowing practice. Overall, mowing exhibited a very limited capacity to alleviate the effects of long-term N addition on macronutrients in the plant-soil system. These findings highlight the importance of considering the distribution of macronutrients across distinct plant organs and the dynamic nutrient interplay between plants and soil, particularly in the context of long-term fertilization and mowing practices, when formulating effective grassland management strategies.


Subject(s)
Ecosystem , Soil , Nitrogen , Plants , China , Nutrients , Grassland
5.
Front Microbiol ; 14: 1240707, 2023.
Article in English | MEDLINE | ID: mdl-37860140

ABSTRACT

Food chain contamination by soil lead (Pb), beginning with Pb uptake by leafy vegetables, is a threat to food safety and poses a potential risk to human health. This study highlights the importance of two ecologically different earthworm species (the anecic species Amynthas aspergillum and the epigeic species Eisenia fetida) as the driving force of microbial hotspots to enhance Pb accumulation in the leafy vegetable Brassica campestris at different Pb contamination levels (0, 100, 500, and 1,000 mg·kg-1). The fingerprints of phospholipid fatty acids (PLFAs) were employed to reveal the microbial mechanism of Pb accumulation involving earthworm-plant interaction, as PLFAs provide a general profile of soil microbial biomass and community structure. The results showed that Gram-positive (G+) bacteria dominated the microbial community. At 0 mg·kg-1 Pb, the presence of earthworms significantly reduced the total PLFAs. The maximum total of PLFAs was found at 100 mg·kg-1 Pb with E. fetida inoculation. A significant shift in the bacterial community was observed in the treatments with E. fetida inoculation at 500 and 1,000 mg·kg-1 Pb, where the G+/G- bacteria ratio was significantly decreased compared to no earthworm inoculation. Principal component analysis (PCA) showed that E. fetida had a greater effect on soil microbial hotspots than A. aspergillum, thus having a greater effect on the Pb uptake by B. campestris. Redundancy analysis (RDA) showed that soil microbial biomass and structure explained 43.0% (R2 = 0.53) of the total variation in Pb uptake by B. campestris, compared to 9.51% of microbial activity. G- bacteria explained 23.2% of the total variation in the Pb uptake by B. campestris, significantly higher than the other microbes. The Mantel test showed that microbial properties significantly influenced Pb uptake by B. campestris under the driving force of earthworms. E. fetida inoculation was favorable for the G- bacterial community, whereas A. aspergillum inoculation was favorable for the fungal community. Both microbial communities facilitated the entry of Pb into the vegetable food chain system. This study delivers novel evidence and meaningful insights into how earthworms prime the microbial mechanism of Pb uptake by leafy vegetables by influencing soil microbial biomass and community composition. Comprehensive metagenomics analysis can be employed in future studies to identify the microbial strains promoting Pb migration and develop effective strategies to mitigate Pb contamination in food chains.

6.
Methods Mol Biol ; 2642: 375-386, 2023.
Article in English | MEDLINE | ID: mdl-36944889

ABSTRACT

The study of root growth and plasticity in situ is rendered difficult by the opacity and mechanical barrier of soil substrates. Therefore, for the analysis of developmental processes and abiotic stress and development relationships, it is essential to set up cultivation systems that overcome these hindrances in a non-invasive and non-destructive manner. For this purpose, we have developed a useful and powerful rhizobox culture system, where the roots are separated from the soil substrate by a porous membrane with a mesh of such width that allows the exchange of water and solutes without allowing the roots to penetrate the soil. This system provides direct, easy, and quick access to the roots and allows to follow root growth and development, root system architecture, and root system plasticity at different stages of plant development and under various environmental conditions. Moreover, these rhizoboxes provide clean and intact roots that can be easily harvested to perform further physiological, biochemical, and molecular analyses at different stages of development and in response to various environmental constraints. This rhizobox method was validated by assessing root response plasticity of drought-stressed Arabidopsis and pea plants grown in soil displaying water content alterations. This rhizobox system is suitable for many types of abiotic stress-development studies, including the comparison of different stress intensities or of various mutants and genotypes.


Subject(s)
Arabidopsis , Water , Plant Roots/genetics , Soil/chemistry , Stress, Physiological , Droughts
7.
Environ Pollut ; 306: 119395, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35525514

ABSTRACT

Bio-based plastics have been developed as alternative materials to solve the energy crisis brought by plastic production, but their impacts on soil ecosystems (e.g. plant and microorganisms) remain largely unknown. Here, we conducted study on the impacts of polyethylene 2,5-furan-dicarboxylate (PEF), a new bio-based plastic, on the plant-soil ecosystem, with comparison of fossil-based plastic polyethylene terephthalate (PET). Our investigation showed that, after 21 days exposure to microplastics (MPs) at doses of 0.5%, 1% and 2%, both PEF and PET MPs inhibited the growth of lettuce, where chlorophyll was found to be the most sensitive index. According to the comprehensive stress resistance indicators, PET MPs showed more severe phytotoxicity than PEF MPs. Although both PEF and PET MPs could inhibit soil enzyme activities, PET MPs exhibited significantly reduction on the diversity of rhizosphere soil bacterial community and changed the relative abundance of dominant species. Our study gave insights into the effects of PEF and PET MPs on the plant-soil system, where bio-based PEF MPs showed more friendly interaction with plant and soil than fossil-based PET MPs. Our results provided scientific data for risk assessment and useful information for the prospective application of bio-based plastics.


Subject(s)
Microplastics , Soil , Ecosystem , Fossils , Lactuca , Plastics/toxicity , Polyethylene Terephthalates
8.
Sci Total Environ ; 831: 154911, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35364143

ABSTRACT

Stormwater biofiltration systems (also known as biofilters, bioretention, rain gardens) are engineered nature-based solutions, which help mitigate aquatic nitrogen pollution arising from storm runoff. These systems are being increasingly used in a range of climates across the world. A decline in treatment performance is frequently observed in cold weather conditions. While plant species comprise an important design factor influencing system performance, the effect of temperature on the fate of dissolved nitrogen forms, namely ammonium (NH4+) and nitrate (NO3-), in the presence of different plant species in these systems remains unclear. A large scale laboratory experiment was undertaken that measured potential rates of nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) as well as the microbial community structure to investigate nitrogen fate and hence removal under two different temperature conditions (2 °C and 15 °C) in the presence of four distinct plant species. The results indicate that lower nitrification rates (reduced by a factor of 4) coupled with potential media NH4+ desorption could be contributing to reduced NH4+ removal during cold conditions. Planting with species exhibiting good nutrient uptake capacity can reduce the extent of this performance decline. While NO3- reduction generally remains problematic during cold weather (<0 to 55% reduction), which may not be significantly different from warmer periods, the study demonstrated that the denitrification potential and gene abundance (nap, nar, NirS, norB, nosZ) to be higher than those of nitrification (amoA). Denitrification may not proceeding at optimal rates due to lack of conducive environmental conditions. Nitrogen transformation via DNRA was found to be relatively insignificant. Future studies should investigate the potential of employing cold-resilient plant species to maintain both NH4+ and NO3- removal in cold weather conditions.


Subject(s)
Ammonium Compounds , Denitrification , Nitrates , Nitrogen , Nitrogen Oxides , Plants , Temperature
9.
Environ Sci Pollut Res Int ; 29(39): 59159-59172, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35381918

ABSTRACT

The extensive application of farm manure that is contaminated with pharmaceutical antibiotics not only causes substantial soil pollution but additionally leads to the input of antibiotic resistance genes (ARGs) into the soil. These ARGs would proliferate and affect human health via the food chain. The effects of cultivated crops and wild plants on ARGs in rhizosphere soil are unclear. Therefore, we chose potted plants of cultivated crops (pakchoi, lettuce, corn) and wild plants (barnyard grass, crabgrass, dog tail), and set up test groups, i.e., treatment group, antibiotic-contaminated soil; control group, no antibiotic-contaminated soil; and a blank group without plants. The aim was to explore differences in the distribution and transfer of ARGs in the soil-plant system between cultivated crops and wild plants and at the same time to explore the influence of bacterial community evolution on ARGs in the rhizosphere soil of cultivated crops and wild plants. We concluded that under the pressure of antibiotic selection, ARGs can be transferred to the root endophytes of plants through the soil and further to the phyllosphere of plants, and cultivated crops such as pakchoi and wild plants barnyard grass have a strong ability to transport ARGs. Regardless of cultivated crops or wild plants, the abundance of ARGs in rhizosphere soil can be substantially reduced by 66.53 ~ 85.35%. Redundancy analysis and network analysis indicated that bacterial community succession is the main mechanism affecting changes of ARGs in rhizosphere soil. The reduction of Firmicutes due to the plant was the main factor responsible for the reduction of the abundance of ARGs in rhizosphere soil. The tetA, tetG, tetX, sul2, and qnrS genes are highly related to some potential pathogens, and the health risks they bring are a red flag that deserves attention.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Genes, Bacterial , Soil , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Crops, Agricultural , Drug Resistance, Microbial/genetics , Manure , Soil Microbiology
10.
Sci Total Environ ; 822: 153573, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35122851

ABSTRACT

Carbon (C), nitrogen (N) and phosphorus (P) concentrations and stoichiometry play important roles in biogeochemical cycles of the ecosystems, yet it is still unclear how the allocations of C, N and P concentrations and stoichiometry among plant organs and soils related to O3 stress and straw return. Here, a pot experiment was conducted in open top chambers to monitor the response of C, N and P concentrations and stoichiometry of leaves, stems, roots and soils during a growing season (branching, flowering and podding stages) of soybean (Glycine max; a species highly sensitive to O3) to background O3 concentration (44.8 ± 5.6 ppb), O3 stress (79.7 ± 5.4 ppb) and straw treatment (no straw return and straw return). O3 stress significantly decreased root biomass. Straw return significantly increased root biomass under O3 stress at branching and flowering stages. Generally, O3 stress and straw return showed significant effects on the C, N and P concentrations of leaves and soils, and stoichiometric ratios of leaves, stems and microbial biomass. The C, N and P concentrations and stoichiometry of leaves, stems, roots and soils in response to O3 stress and straw return at the branching stage were inconsistent with the changes observed at the flowering and podding stages. The P conversion efficiency showed significant relationship with root P concentration under the combined effects of O3 stress and straw return. Altogether, the present study indicated that C, N and P concentrations of soybean might be more important than stoichiometric ratios as a driver of root defence against O3 stress in the case of straw return.


Subject(s)
Nitrogen , Soil , Biomass , Carbon/analysis , China , Ecosystem , Nitrogen/analysis , Phosphorus/analysis , Plant Leaves/chemistry , Seasons , Glycine max
11.
New Phytol ; 232(3): 1250-1258, 2021 11.
Article in English | MEDLINE | ID: mdl-34322875

ABSTRACT

Biochar amendment has been proposed as a promising means to increase carbon (C) sequestration and simultaneously benefit plant productivity. However, quantifying the assimilation and dynamics of photosynthetic C in plant-soil systems under biochar addition remains elusive. This study established two experimental factors involving biochar addition and nitrogen (N) fertilization to quantitatively assess the effect of biochar on photosynthetic C fate in a rice plant-soil system. The rice plants and soil samples were collected and analyzed after 6-h pulse labeling with 13 CO2 at the tillering, jointing, heading and ripening stages. Biochar did not affect the proportions of photoassimilated carbon-13 (13 C) allocations in plant-soil systems. Nevertheless, biochar enhanced the 13 C contents in the shoot, root, and soil pools, especially when combined with N fertilization, and biochar increased the cumulative assimilated 13 C contents in the shoot, root, and soil pools by 23%, 14% and 20%, respectively, throughout the whole growth stage. Moreover, biochar addition significantly enhanced the N use efficiency (NUE) by c. 23% at the heading and ripening stages. In summary, biochar increases the content of photoassimilated C in plant-soil systems by improving plant productivity via enhancing NUE, thus resulting in a higher soil C sequestration potential.


Subject(s)
Oryza , Soil , Carbon , Charcoal
12.
Environ Int ; 156: 106708, 2021 11.
Article in English | MEDLINE | ID: mdl-34153891

ABSTRACT

The ecological stress of microplastic contamination to ecosystem functioning and biota raises concerns worldwide, but the impacts of microplastics on wetland ecosystems (e.g., plants, microbes, and soil) have not been fully elucidated. In this study, we used a controlled pot experiment to determine the effects of different types (PS, PVC, PP and PE) of microplastics on the growth performance of wetland plants, soil chemical properties, enzyme systems and microbial communities. Microplastics can change the germination strategies of seeds, and there was also a reduction in fresh weight and plant height in Bacopa sp. Chlorophyllb synthesiswas significantly reduced in mixed microplastic treatments compared with controls. Microplastic addition in soil caused higher concentrations of reactive oxygen species in plants, which led to increased lipid peroxidation and activation of the antioxidant defence system. The organic matter, potassium, total nitrogen and phosphorus changed significantly in the presence of the four forms of microplastics, while soil pH was not substantially affected. Microplastics had a negative effect on soil enzyme activity, for example, PS MP particles significantly decreased sucrase activities in the soil after 40 days. The results of this study showed that microplastic addition decreased the richness and diversity of bacterial. When soil was exposed to polystyrene microplastics, the richness and diversity of algae significantly increased on the soil surface. Thus, microplastics can alters the structure of soil microbial communities, resulting in the enrichment of some special soil microbial taxa involved in nitrogen cycling. These results indicate both the direct and indirect effects of plastic residues on the plant-microbe-soil system, which has implications for potential further impacts on wetland ecosystem functioning.


Subject(s)
Microbiota , Soil , Ecosystem , Microplastics , Plastics/toxicity , Wetlands
13.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4258-4266, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33393265

ABSTRACT

To investigate the distributions and stocks of total phosphorus (TP) in plant-soil systems of marshes in Shanyutan of the Minjiang River estuary and explore its influencing factors, Phragmites australis (PA) marsh and Cyperus malaccensis (CM) marsh before spatial expansion and ecotonal marsh (EM, P. australis and C. malaccensis in EM were denoted by PA' and CM', respectively) during spatial expansion were studied. Results showed that, as affected by spatial expansion, the contents of TP in both plant and soil in different marshes showed great variations. Compared with PA and CM marshes, soil TP in EM increased by 20.0% and 7.1%, respectively. The variation of soil TP in EM might be attributed to the alteration of soil particle composition, plant bio-mass and root/shoot ratio during spatial expansion. Except for leaves, TP in organs of P. australis in P. australis-C. malaccensis community (PA') was lower than that in C. malaccensis in P. australis-C. malaccensis community (CM'), due to the differences in absorption, utilization and translocation way of P among organs between the two species. The competition effect caused by spatial expansion greatly changed plant P allocation ratio of the two species. Compared with PA and CM, the allocations of P in roots and leaves of PA' increased, while only that in roots of CM' rose. During spatial expansion, the two species might adopt different adaptation strategies for P absorption and utilization to maintain their competitiveness. The PA might compete primarily by strengthening the P accumulation capacities of its roots and promoting leaf photosynthesis, whereas the CM might resist the spatial expansion of PA by increasing its underground biomass to enhance P absorption.


Subject(s)
Cyperus , Estuaries , China , Phosphorus , Poaceae , Rivers , Soil , Wetlands
14.
Ying Yong Sheng Tai Xue Bao ; 29(5): 1397-1404, 2018 May.
Article in Chinese | MEDLINE | ID: mdl-29797870

ABSTRACT

To examine the allocation of rice photosynthates and its response to the elevated CO2 (800 µL·L-1) and N fertilization (100 mg·kg-1) at both tillering stage and booting stage in plant-soil system, rice was continually labelled with 13CO2. The results showed that the rice root biomass at the tillering stage and the shoot biomass at the booting stage were significantly increased under elevated CO2. Elevated CO2 increased the rice biomass and root-shoot ratio at tillering stage, but reduced it at booting stage. Under elevated CO2, N fertilization promoted shoot biomass during rice growth, but significantly decreased the root biomass at booting stage. Elevated CO2 significantly increased the allocation of assimilated 13C to the soil at the booting stage. N fertilization did not promote the elevated CO2-induced stimulation of assimilated 13C allocated to the soil, and it even decreased the proportion of assimilated 13C in the soil. In summary, elevated CO2 increased the photosynthetic C allocation into soil and promoted the turnover of soil organic carbon in paddy soil. N fertilization enhanced rice shoot biomass but decreased the belowground allocation of photosynthetic C.


Subject(s)
Carbon Dioxide , Oryza/physiology , Photosynthesis , Biomass , Fertilizers , Nitrogen , Soil
15.
Isotopes Environ Health Stud ; 54(1): 41-62, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28914091

ABSTRACT

Temperate ecosystems are susceptible to drought events. The effect of a severe drought (104 days) followed by irrigation on the plant C uptake, its assimilation and input of C in soil were examined using a triple 13CO2 pulse-chase labelling experiment in model grassland and heathland ecosystems. First 13CO2 pulse at day 0 of the experiment revealed much higher 13C tracer uptake for shoots, roots and soil compared to the second pulse (day 44), where all plants showed significantly lower 13C tracer uptake. After the third 13CO2 pulse (day 70), very low 13C uptake in shoots led to a negligible allocation of 13C into roots and soil. During irrigation after the severe drought, the 13C tracer that was allocated in plant tissues during the second and third pulse labelling was re-allocated in roots and soil, as soon as the irrigation started. This re-allocation was higher and longer lasting in heathland compared to grassland ecosystems.


Subject(s)
Agricultural Irrigation , Carbon Dioxide/metabolism , Droughts , Ecosystem , Plants/metabolism , Carbon Isotopes/analysis , Grassland , Plant Roots/metabolism , Plant Shoots/metabolism
16.
Chemosphere ; 185: 1011-1018, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28753902

ABSTRACT

Heavy metal pollution is an important concern because of its potential to affect human health. This study was conducted to analyze plants growing on a landfill body and in its surroundings to determine their potential for heavy metal accumulation. In addition, the enrichment coefficient (EC) for the plant/soil system was used for determining the environmental contamination from a landfill in terms of heavy metal accumulation. The samples were taken in 2013-2014. Of the analyzed metals, iron achieved the highest values in the samples, i.e. - stalk (103.4-6564.6 mg/kg DM), roots (6563.6-33,036.6 mg/kg DM), leaf (535.1-11,275 mg/kg DM) and soil (12,389-39,381.9 mg/kg DM). The highest concentrations were determined in 2013 for Fe, Mn and Zn. Iron achieved the highest concentrations in the years 2013-2014. Next, EC values were then calculated, with the highest noted for Cd. Cd, as well as Cr, Ni and Zn are accumulated mostly in the leaves, whereas Co, Cu, Fe, Hg, Mn and Pb are accumulated mainly in the roots of T. vulgare.


Subject(s)
Environmental Monitoring , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Tanacetum/metabolism , Environmental Pollution , Humans , Iron , Metals, Heavy/analysis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Waste Disposal Facilities
17.
Ying Yong Sheng Tai Xue Bao ; 28(12): 4134-4142, 2017 Dec.
Article in Chinese | MEDLINE | ID: mdl-29696912

ABSTRACT

Currently, reasonable disposal of municipal sewage sludge is one of the important issues in the field of resources and environmental science. Sludge is rich in large amounts of organic matter and available nutrients, promoting soil fertility, soil physical structure and biological properties. However, sludge contains a variety of heavy metals, organic contaminants and other hazardous substance, especially heavy metals, which are the bottlenecks of agricultural application of sludge. To improve the sewage sludge utilization efficiency and decrease the effect on soil, this essay made a summary on domestic and foreign studies on plant-soil interaction ecosystem with sewage sludge to provide a theoretical basis and scientific guidance for advancing sewage sludge utilization efficiency.


Subject(s)
Agriculture , Metals, Heavy , Sewage , Soil , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL