Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
2.
Microbiome ; 11(1): 216, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777794

ABSTRACT

BACKGROUND: Microbiome recruitment is influenced by plant host, but how host plant impacts the assembly, functions, and interactions of perennial plant root microbiomes is poorly understood. Here we examined prokaryotic and fungal communities between rhizosphere soils and the root endophytic compartment in two native Miscanthus species (Miscanthus sinensis and Miscanthus floridulus) of Taiwan and further explored the roles of host plant on root-associated microbiomes. RESULTS: Our results suggest that host plant genetic variation, edaphic factors, and site had effects on the root endophytic and rhizosphere soil microbial community compositions in both Miscanthus sinensis and Miscanthus floridulus, with a greater effect of plant genetic variation observed for the root endophytic communities. Host plant genetic variation also exerted a stronger effect on core prokaryotic communities than on non-core prokaryotic communities in each microhabitat of two Miscanthus species. From rhizosphere soils to root endophytes, prokaryotic co-occurrence network stability increased, but fungal co-occurrence network stability decreased. Furthermore, we found root endophytic microbial communities in two Miscanthus species were more strongly driven by deterministic processes rather than stochastic processes. Root-enriched prokaryotic OTUs belong to Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Sphingobacteriia, and [Saprospirae] both in two Miscanthus species, while prokaryotic taxa enriched in the rhizosphere soil are widely distributed among different phyla. CONCLUSIONS: We provide empirical evidence that host genetic variation plays important roles in root-associated microbiome in Miscanthus. The results of this study have implications for future bioenergy crop management by providing baseline data to inform translational research to harness the plant microbiome to sustainably increase agriculture productivity. Video Abstract.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Soil Microbiology , Poaceae/microbiology , Microbiota/genetics , Rhizosphere , Plants , Soil , Genetic Variation , Plant Roots/microbiology
3.
Annu Rev Phytopathol ; 61: 403-423, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37217203

ABSTRACT

Plant and soil microbiomes are integral to the health and productivity of plants and ecosystems, yet researchers struggle to identify microbiome characteristics important for providing beneficial outcomes. Network analysis offers a shift in analytical framework beyond "who is present" to the organization or patterns of coexistence between microbes within the microbiome. Because microbial phenotypes are often significantly impacted by coexisting populations, patterns of coexistence within microbiomes are likely to be especially important in predicting functional outcomes. Here, we provide an overview of the how and why of network analysis in microbiome research, highlighting the ways in which network analyses have provided novel insights into microbiome organization and functional capacities, the diverse network roles of different microbial populations, and the eco-evolutionary dynamics of plant and soil microbiomes.


Subject(s)
Biological Evolution , Microbiota , Organizations , Phenotype , Soil
4.
Glob Chang Biol ; 29(11): 3159-3176, 2023 06.
Article in English | MEDLINE | ID: mdl-36999440

ABSTRACT

Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2 -fixing (diazotrophic) and CH4 -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4 , CO2 ) and nitrogen (NH4 -N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2 . Under ambient CO2 , warming increased plant-available NH4 -N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.


Subject(s)
Microbiota , Sphagnopsida , Nitrogen/analysis , Nitrogen Fixation , Soil , Carbon Dioxide , Oxidation-Reduction , Carbon , Microbiota/physiology , Methane
5.
Microorganisms ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36013946

ABSTRACT

Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.

6.
Microorganisms ; 10(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35889099

ABSTRACT

Many different experimental approaches have been applied to elaborate and study the beneficial interactions between soil bacteria and plants. Some of these methods focus on changes to the plant and others are directed towards assessing the physiology and biochemistry of the beneficial plant growth-promoting bacteria (PGPB). Here, we provide an overview of some of the current techniques that have been employed to study the interaction of plants with PGPB. These techniques include the study of plant microbiomes; the use of DNA genome sequencing to understand the genes encoded by PGPB; the use of transcriptomics, proteomics, and metabolomics to study PGPB and plant gene expression; genome editing of PGPB; encapsulation of PGPB inoculants prior to their use to treat plants; imaging of plants and PGPB; PGPB nitrogenase assays; and the use of specialized growth chambers for growing and monitoring bacterially treated plants.

7.
New Phytol ; 229(2): 1091-1104, 2021 01.
Article in English | MEDLINE | ID: mdl-32852792

ABSTRACT

Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.


Subject(s)
Microbiota , Soil Microbiology , Bacteria , Plant Roots , Rhizosphere
8.
FEMS Microbiol Ecol ; 97(1)2021 01 08.
Article in English | MEDLINE | ID: mdl-33367840

ABSTRACT

Managed agricultural ecosystems are unique systems where crops and microbes are intrinsically linked. This study focuses on discerning microbiome successional patterns across all plant organs and tests for evidence of niche differentiation along temporal and spatial axes. Soybean plants were grown in an environmental chamber till seed maturation. Samples from various developmental stages (emergence, growth, flowering and maturation) and compartments (leaf, stem, root and rhizosphere) were collected. Community structure and composition were assessed with 16S rRNA gene and ITS region amplicon sequencing. Overall, the interaction between spatial and temporal dynamics modulated alpha and beta diversity patterns. Time lag analysis on measured diversity indices highlighted a strong temporal dependence of communities. Spatial and temporal interactions influenced the relative abundance of the most abundant genera, whilst random forest predictions reinforced the observed localisation patterns of abundant genera. Overall, our results show that spatial and temporal interactions tend to maintain high levels of biodiversity within the bacterial/archaeal community, whilst in fungal communities OTUs within the same genus tend to have overlapping niches.


Subject(s)
Glycine max , Microbiota , Plant Roots , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
9.
FEMS Microbiol Ecol ; 96(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-32562419

ABSTRACT

Plant roots assemble in two distinct microbial compartments: the rhizosphere (microbes in soil surrounding roots) and the endosphere (microbes within roots). Our knowledge of fungal community assembly in these compartments is limited, especially in wetlands. We tested the hypothesis that biotic factors would have direct effects on rhizosphere and endosphere assembly, while abiotic factors would have direct and indirect effects. Using a field study, we examined the influences of salinity, water level and biotic factors on baldcypress (Taxodium distichum) fungal communities. We found that endosphere fungi, unlike rhizosphere fungi, were correlated with host density and canopy cover, suggesting that hosts can impose selective filters on fungi colonizing their roots. Meanwhile, local abiotic conditions strongly influenced both rhizosphere and endosphere diversity in opposite patterns, e.g. highest endosphere diversity (hump-shaped) and lowest rhizosphere diversity (U-shaped) at intermediate salinity levels. These results indicate that the assembly and structure of the root endosphere and rhizosphere within a host can be shaped by different processes. Our results also highlight the importance of assessing how environmental changes affect plant and plant-associated fungal communities in wetland ecosystems where saltwater intrusion and sea level rise are major threats to both plant and fungal communities.


Subject(s)
Microbiota , Mycobiome , Bacteria , Fungi , Plant Roots , Rhizosphere , Soil , Soil Microbiology
10.
mSphere ; 4(2)2019 03 06.
Article in English | MEDLINE | ID: mdl-30842267

ABSTRACT

Invasive species could benefit from being introduced to locations with more favorable species interactions, including the loss of enemies, the gain of mutualists, or the simplification of complex interaction networks. Microbiomes are an important source of species interactions with strong fitness effects on multicellular organisms, and these interactions are known to vary across regions. The highly invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience more favorable microbial interactions in its invasions of the Americas, but the microbiome that must contribute to this variation in interactions is unknown. We sequenced amplicons of 16S rRNA genes to characterize bacterial community compositions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle plants from seven invading populations in California, USA, and eight native populations in Europe. We tested for the differentiation of microbiomes by geography, plant compartment, and plant genotype. Bacterial communities differed significantly between native and invading plants within plant compartments, with consistently lower diversity in the microbiome of invading plants. The diversity of bacteria in roots was positively correlated with plant genotype diversity within both ranges, but this relationship did not explain microbiome differences between ranges. Our results reveal that these invading plants are experiencing either a simplified microbial environment or simplified microbial interactions as a result of the dominance of a few taxa within their microbiome. Our findings highlight several alternative hypotheses for the sources of variation that we observe in invader microbiomes and the potential for altered bacterial interactions to facilitate invasion success.IMPORTANCE Previous studies have found that introduced plants commonly experience more favorable microbial interactions in their non-native range, suggesting that changes to the microbiome could be an important contributor to invasion success. Little is known about microbiome variation across native and invading populations, however, and the potential sources of more favorable interactions are undescribed. Here, we report one of the first microbiome comparisons of plants from multiple native and invading populations, in the noxious weed yellow starthistle. We identify clear differences in composition and diversity of microbiome bacteria. Our findings raise new questions about the sources of these differences, and we outline the next generation of research that will be required to connect microbiome variation to its potential role in plant invasions.


Subject(s)
Bacteria/classification , Centaurea/microbiology , Genetic Variation , Microbiota , California , Centaurea/genetics , Europe , Genetics, Population , Genotype , Geography , Introduced Species , RNA, Ribosomal, 16S , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL