Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Front Pharmacol ; 15: 1401961, 2024.
Article in English | MEDLINE | ID: mdl-39045049

ABSTRACT

Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.

2.
Sci Rep ; 14(1): 16540, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39020013

ABSTRACT

Solanine (SOL) and chaconine (CHA) are glycoalkaloids (GAs) produced mainly by Solanum plants. These plant secondary metabolites affect insect metabolism; thus, they have the potential to be applied as natural plant protection products. However, it is not known which GA concentration induces physiological changes in animals. Therefore, the aim of this study was to perform a quantitative analysis of SOL and CHA in the larvae of Tenebrio molitor using LC‒MS to assess how quickly they are eliminated or metabolised. In this experiment, the beetles were injected with 2 µL of 10-5 M SOL or CHA solution, which corresponds to a dosage range of 0.12-0.14 ng/mg body mass. Then, 0.5, 1.5, 8, and 24 h after GA application, the haemolymph (H), gut (G), and the remainder of the larval body (FB) were isolated. GAs were detected in all samples tested for 24 h, with the highest percentage of the amount applied in the FB, while the highest concentration was measured in the H sample. The SOL and CHA concentrations decreased in the haemolymph over time, while they did not change in other tissues. CHA had the highest elimination rate immediately after injection, while SOL slightly later. None of the GA hydrolysis products were detected in the tested samples. One possible mechanism of the detoxification of GAs may be oxidation and/or sequestration. They may be excreted by Malpighian tubules, with faeces or with cuticles during moulting. The results presented are significant because they facilitate the interpretation of studies related to the effects of toxic substances on insect metabolism.


Subject(s)
Hemolymph , Larva , Tenebrio , Animals , Tenebrio/metabolism , Larva/metabolism , Hemolymph/metabolism , Hemolymph/chemistry , Alkaloids/metabolism , Alkaloids/analysis , Chromatography, Liquid
4.
Gigascience ; 132024 01 02.
Article in English | MEDLINE | ID: mdl-38837946

ABSTRACT

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Chromosomes, Plant , Genomics/methods , Malvaceae/genetics
6.
Plant Sci ; 345: 112135, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797382

ABSTRACT

Although Boraginaceae have been classified as good sources of nectar for many insects, little is still known about their nectar and nectaries. Thus, in the present contribution, we investigated the nectar production dynamics and chemistry in Borago officinalis L. (borage or starflower), together with its potential interaction capacity with pollinators. A peak of nectar secretion (∼5.1 µL per flower) was recorded at anthesis, to decrease linearly during the following 9 days. In addition, TEM and SEM analyses were performed to understand ultrastructure and morphological changes occurring in borage nectary before and after anthesis, but also after its secretory phase. Evidence suggested that nectar was transported by the apoplastic route (mainly from parenchyma to epidermis) and then released essentially by exocytotic processes, that is a granulocrine secretion. This theory was corroborated by monitoring the signal of complex polysaccharides and calcium, respectively, via Thiéry staining and ESI/EELS technique. After the secretory phase, nectary underwent degeneration, probably through autophagic events and/or senescence induction. Furthermore, nectar (Nec) and other flower structures (i.e., sepals, gynoecia with nectaries, and petals) from borage were characterized by spectrophotometry and HPLC-DAD, in terms of plant secondary metabolites, both at early (E-) and late (L-) phase from anthesis. The content of phytochemicals was quantified and discussed for all samples, highlighting potential biological roles of these compounds in the borage flower (e.g., antimicrobial, antioxidant, staining effects). Surprisingly, a high significant accumulation of flavonoids was registered in L-Nec, with respect to E-Nec, indicating that this phenomenon might be functional and able to hide molecular (e.g., defence against pathogens) and/or ecological (e.g., last call for pollinators) purposes. Indeed, it is known that these plant metabolites influence nectar palatability, encouraging the approach of specialist pollinators, deterring nectar robbers, and altering the behaviour of insects.


Subject(s)
Borago , Flowers , Plant Nectar , Plant Nectar/metabolism , Plant Nectar/chemistry , Flowers/metabolism , Flowers/ultrastructure , Borago/metabolism , Borago/chemistry , Phytochemicals/metabolism , Animals , Pollination
7.
Plant Physiol Biochem ; 211: 108674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705044

ABSTRACT

Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.


Subject(s)
Phytochemicals , Plants, Medicinal , Secondary Metabolism , Humans , Alkaloids/metabolism , Antioxidants/metabolism , Phenols/metabolism , Plants/metabolism , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Terpenes/metabolism , Phytochemicals/therapeutic use
8.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731602

ABSTRACT

Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.


Subject(s)
Metabolic Engineering , Plants , Secondary Metabolism , Plants/metabolism , Metabolic Engineering/methods , Synthetic Biology/methods
9.
Front Microbiol ; 15: 1379488, 2024.
Article in English | MEDLINE | ID: mdl-38680914

ABSTRACT

Background: The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods: We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results: We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion: Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.

10.
Plants (Basel) ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611553

ABSTRACT

The Australian Wet Tropics World Heritage Area (WTWHA) in northeast Queensland is home to approximately 18 percent of the nation's total vascular plant species. Over the past century, human activity and industrial development have caused global climate changes, posing a severe and irreversible danger to the entire land-based ecosystem, and the WTWHA is no exception. The current average annual temperature of WTWHA in northeast Queensland is 24 °C. However, in the coming years (by 2030), the average annual temperature increase is estimated to be between 0.5 and 1.4 °C compared to the climate observed between 1986 and 2005. Looking further ahead to 2070, the anticipated temperature rise is projected to be between 1.0 and 3.2 °C, with the exact range depending on future emissions. We identified 84 plant species, endemic to tropical montane cloud forests (TMCF) within the WTWHA, which are already experiencing climate change threats. Some of these plants are used in herbal medicines. This study comprehensively reviewed the metabolomics studies conducted on these 84 plant species until now toward understanding their physiological and metabolomics responses to global climate change. This review also discusses the following: (i) recent developments in plant metabolomics studies that can be applied to study and better understand the interactions of wet tropics plants with climatic stress, (ii) medicinal plants and isolated phytochemicals with structural diversity, and (iii) reported biological activities of crude extracts and isolated compounds.

11.
Pest Manag Sci ; 80(8): 3935-3944, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38520323

ABSTRACT

BACKGROUND: Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations. RESULTS: We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae. CONCLUSION: In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Larva , Metagenomics , Phenol , Tephritidae , Animals , Tephritidae/microbiology , Tephritidae/metabolism , Larva/microbiology , Larva/growth & development , Larva/metabolism , Phenol/metabolism , Phenols/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Citrus/microbiology
12.
Plants (Basel) ; 13(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475572

ABSTRACT

Plant-parasitic nematodes (PPNs) are highly damaging pests responsible for heavy losses in worldwide productivity in a significant number of important plant crops. Common pest management strategies rely on the use of synthetic chemical nematicides, which have led to serious concerns regarding their impacts on human health and the environment. Plant natural products, or phytochemicals, can provide a good source of agents for sustainable control of PPNs, due to their intrinsic characteristics such as higher biodegradability, generally low toxicity for mammals, and lower bioaccumulation in the environment. In this work, the nematicidal activity of 39 phytochemicals was determined against the root-lesion nematode (RLN) Pratylenchus penetrans using standard direct and indirect contact methodologies. Overall, the RLN was tolerant to the tested phytochemicals at the highest concentration, 2 mg/mL, seldom reaching full mortality. However, high activities were obtained for benzaldehyde, carvacrol, 3-octanol, and thymol, in comparison to other phytochemicals or the synthetic nematicide oxamyl. These phytochemicals were seen to damage nematode internal tissues but not its cuticle shape. Also, the environmental and (eco)toxicological parameters reported for these compounds suggest lower toxicity and higher safety of use than oxamyl. These compounds appear to be good candidates for the development of biopesticides for a more sustainable pest management strategy.

13.
J Insect Physiol ; 154: 104628, 2024 05.
Article in English | MEDLINE | ID: mdl-38387524

ABSTRACT

Herbivorous insects can identify their host plants by sensing plant secondary metabolites as chemical cues. We previously reported the two-factor host acceptance system of the silkworm Bombyx mori larvae. The chemosensory neurons in the maxillary palp (MP) of the larvae detect mulberry secondary metabolites, chlorogenic acid (CGA), and isoquercetin (ISQ), with ultrahigh sensitivity, for host plant recognition and feeding initiation. Nevertheless, the molecular basis for the ultrasensitive sensing of these compounds remains unknown. In this study, we demonstrated that two gustatory receptors (Grs), BmGr6 and BmGr9, are responsible for sensing the mulberry compounds with attomolar sensitivity for host plant recognition by silkworm larvae. Calcium imaging assay using cultured cells expressing the silkworm putative sugar receptors (BmGr4-10) revealed that BmGr6 and BmGr9 serve as receptors for CGA and ISQ with attomolar sensitivity in human embryonic kidney 293T cells. CRISPR/Cas9-mediated knockout (KO) of BmGr6 and BmGr9 resulted in a low probability of making a test bite of the mulberry leaves, suggesting that they lost the ability to recognize host leaves. Electrophysiological recordings showed that the loss of host recognition ability in the Gr-KO strains was due to a drastic decrease in MP sensitivity toward ISQ in BmGr6-KO larvae and toward CGA and ISQ in BmGr9-KO larvae. Our findings have revealed that the two Grs, previously considered to be sugar receptors, are molecules responsible for detecting plant phenolics in host plant recognition.


Subject(s)
Bombyx , Humans , Animals , Larva/physiology , Bombyx/metabolism , Plants , Taste/physiology , Sugars/metabolism , Plant Leaves/metabolism
14.
Ecol Evol ; 14(2): e10912, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357594

ABSTRACT

Plant secondary metabolites (PSMs) are produced by plants to overcome environmental challenges, both biotic and abiotic. We were interested in characterizing how autumn seasonality in temperate and subtropical climates affects overall PSM production in comparison to herbivory. Herbivory is commonly measured between spring to summer when plants have high resource availability and prioritize growth and reproduction. However, autumn seasonality also challenges plants as they cope with limited resources and prepare survival for winter. This suggests a potential gap in our understanding of how herbivory affects PSM production in autumn compared to spring/summer. Using meta-analysis, we recorded overall production of 22 different PSM subgroups from 58 published papers to calculate effect sizes from herbivory studies (absence to presence) and temperate to subtropical seasonal studies (summer to autumn), while considering other variables (e.g., plant type, increase in time since herbivory, temperature, and precipitation). We also compared production of five phenolic PSM subgroups - hydroxybenzoic acids, flavan-3-ols, flavonols, hydrolysable tannins, and condensed tannins. We wanted to detect a shared response across all PSMs and found that herbivory increased overall PSM production in herbaceous plants. Herbivory was also found to have a positive effect on individual PSM subgroups, such as flavonol production, while autumn seasonality was found to have a positive effect on flavan-3-ol and condensed tannin production. We discuss how these responses might stem from plants producing some PSMs constitutively, whereas others are induced only after herbivory, and how plants produce metabolites with higher costs only during seasons when other resources for growth and reproduction are less available, while other phenolic PSM subgroups serve more than one function for plants and such functions can be season dependent. The outcome of our meta-analysis is that autumn seasonality changes some PSM production differently from herbivory, and we see value in further investigating seasonality-herbivory interactions with plant chemical defense.

15.
Plants (Basel) ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337964

ABSTRACT

The cultivation of plant cells in large-scale bioreactor systems has long been considered a promising alternative for the overexploitation of wild plants as a source of bioactive phytochemicals. This idea, however, faced multiple constraints upon realization, resulting in very few examples of technologically feasible and economically effective biotechnological companies. The bioreactor cultivation of plant cells is challenging. Even well-growing and highly biosynthetically potent cell lines require a thorough optimization of cultivation parameters when upscaling the cultivation process from laboratory to industrial volumes. The optimization includes, but is not limited to, the bioreactor's shape and design, cultivation regime (batch, fed-batch, continuous, semi-continuous), aeration, homogenization, anti-foaming measures, etc., while maintaining a high biomass and metabolite production. Based on the literature data and our experience, the cell cultures often demonstrate cell line- or species-specific responses to parameter changes, with the dissolved oxygen concentration (pO2) and shear stress caused by stirring being frequent growth-limiting factors. The mass transfer coefficient also plays a vital role in upscaling the cultivation process from smaller to larger volumes. The Experimental Biotechnological Facility at the K.A. Timiryazev Institute of Plant Physiology has operated since the 1970s and currently hosts a cascade of bioreactors from the laboratory (20 L) to the pilot (75 L) and a semi-industrial volume (630 L) adapted for the cultivation of plant cells. In this review, we discuss the most appealing cases of the cell cultivation process's adaptation to bioreactor conditions featuring the cell cultures of medicinal plants Dioscorea deltoidea Wall. ex Griseb., Taxus wallichiana Zucc., Stephania glabra (Roxb.) Miers, Panax japonicus (T. Nees) C.A.Mey., Polyscias filicifolia (C. Moore ex E. Fourn.) L.H. Bailey, and P. fruticosa L. Harms. The results of cell cultivation in bioreactors of different types and designs using various cultivation regimes are covered and compared with the literature data. We also discuss the role of the critical factors affecting cell behavior in bioreactors with large volumes.

16.
Life (Basel) ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276288

ABSTRACT

Secondary metabolites derived from plants are recognized as valuable products with several successful applications in the pharmaceutical, cosmetic, and food industries. The major limitation to the broader implementation of these compounds is their low manufacturing efficiency. Current efforts to overcome unprofitability depend mainly on biotechnological methods, especially through the application of plant in vitro cultures. This concept allows unprecedented bioengineering opportunities for culture system modifications with in situ product removal. The silica-based xerogels can be used as a novel, porous biomaterial characterized by a large surface area and high affinity to lipophilic secondary metabolites produced by plant tissue. This study aimed to investigate the influence of xerogel-based biomaterials functionalized with methyl, hydroxyl, carboxylic, and amine groups on Rindera graeca transgenic root growth and the production of naphthoquinone derivatives. The application of xerogel-based scaffolds functionalized with the methyl group resulted in more than 1.5 times higher biomass proliferation than for reference untreated culture. The naphthoquinone derivatives' production was noted exclusively in culture systems supplemented with xerogel functionalized with methyl and hydroxyl groups. Applying chemically functionalized xerogels as in situ adsorbents allowed for the enhanced growth and productivity of in vitro cultured R. graeca transgenic roots, facilitating product isolation due to their selective and efficient accumulation.

17.
Nat Prod Bioprospect ; 14(1): 5, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195902

ABSTRACT

Highly ameliorated phytochemicals from plants are recognized to have numerous beneficial effects on human health. However, obtaining secondary metabolites directly from wild plants is posing a great threat to endangered plant species due to their over exploitation. Moreover, due to complicated structure and stereospecificity chemical synthesis of these compounds is a troublesome procedure. As a result, sustainable and ecofriendly in vitro strategy has been adopted for phytochemicals production. But, lack of fully differentiated cells lowers down cultured cells productivity. Consequently, for enhancing yield of metabolites produced by cultured plant cells a variety of methodologies has been followed one such approach includes elicitation of culture medium that provoke stress responses in plants enhancing synthesis and storage of bioactive compounds. Nevertheless, for conclusive breakthrough in synthesizing bioactive compounds at commercial level in-depth knowledge regarding metabolic responses to elicitation in plant cell cultures is needed. However, technological advancement has led to development of molecular based approaches like metabolic engineering and synthetic biology which can serve as promising path for phytochemicals synthesis. This review article deals with classification, stimulating effect of elicitors on cultured cells, parameters of elicitors and action mechanism in plants, modern approaches like metabolic engineering for future advances.

18.
Ecotoxicol Environ Saf ; 269: 115902, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38171231

ABSTRACT

Plant secondary metabolites (PSMs) are a defense mechanism against herbivores, which in turn use detoxification metabolism to process ingested and absorbed PSMs. The feeding environment can cause changes in liver metabolism patterns and the gut microbiota. Here, we compared gut microbiota and liver metabolome to investigate the response mechanism of plateau zokors (Eospalax baileyi) to toxic plant Stellera chamaejasme (SC) in non-SC and SC grassland (-SCG and +SCG). Our results indicated that exposure to SC in the -SCG population increased liver inflammatory markers including prostaglandin (PG) in the Arachidonic acid pathway, while exposure to SC in the +SCG population exhibited a significant downregulation of PGs. Secondary bile acids were significantly downregulated in +SCG plateau zokors after SC treatment. Of note, the microbial taxa Veillonella in the -SCG group was significantly correlated with liver inflammation markers, while Clostridium innocum in the +SCG group had a significant positive correlation with secondary bile acids. The increase in bile acids and PGs can lead to liver inflammatory reactions, suggesting that +SCG plateau zokors may mitigate the toxicity of SC plants by reducing liver inflammatory markers including PGs and secondary bile acids, thereby avoiding liver damage. This provides new insight into mechanisms of toxicity by PSMs and counter-mechanisms for toxin tolerance by herbivores.


Subject(s)
Gastrointestinal Microbiome , Herbivory , Plants, Toxic , Metabolome , Liver , Bile Acids and Salts
19.
J Dairy Sci ; 107(2): 840-856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37730175

ABSTRACT

The objective of this study was to evaluate the effects of cashew nut shell extract (CNSE) and monensin on ruminal in vitro fermentation, CH4 production, and ruminal bacterial community structure. Treatments were as follows: control (CON, basal diet without additives); 2.5 µM monensin (MON); 0.1 mg CNSE granule/g DM (CNSE100); and 0.2 mg CNSE granule/g DM (CNSE200). Each treatment was incubated with 52 mL of buffered ruminal content and 500 mg of total mixed ration for 24 h using serum vials. The experiment was performed as a complete randomized block design with 3 runs. Run was used as a blocking factor. Each treatment had 5 replicates, in which 2 were used to determine nutrient degradability, and 3 were used to determine pH, NH3-N, volatile fatty acids, lactate, total gas, CH4 production, and bacterial community composition. Treatment responses for all data, excluding bacterial abundance, were analyzed with the GLIMMIX procedure of SAS v9.4. Treatment responses for bacterial community structure were analyzed with a PERMANOVA test run with the R package vegan. Orthogonal contrasts were used to test the effects of (1) additive inclusion (ADD: CON vs. MON, CNSE100, and CNSE200); (2) additive type (MCN: MON vs. CNSE100 and CNSE200); and (3) CNSE dose (DOS: CNSE100 vs. CNSE200). We observed that pH, acetate, and acetate:propionate ratio in the CNSE100 treatment were lower compared with CNSE200, and propionate in the CNSE100 treatment was greater compared with CNSE200. Compared with MON, CNSE treatments tended to decrease total lactate concentration. Total gas production of CON was greater by 2.63% compared with all treatments, and total CH4 production was reduced by 10.64% in both CNSE treatments compared with MON. Also, compared with MON, in vitro dry matter degradabilities in CNSE treatments were lower. No effects were observed for NH3-N or in vitro neutral detergent fiber degradability. Finally, the relative abundances of Prevotella, Treponema, and Schwartzia were lower, whereas the relative abundances of Butyrivibrio and Succinivibrio were greater in all treatments compared with CON. Overall, the inclusion of CNSE decreased CH4 production compared with MON, making CNSE a possible CH4 mitigation additive in dairy cattle diets.


Subject(s)
Anacardium , Monensin , Cattle , Female , Animals , Monensin/pharmacology , Monensin/metabolism , Lactation , Propionates/metabolism , Fermentation , Nuts , Digestion , Diet/veterinary , Bacteria , Acetates/pharmacology , Methane/metabolism , Lactates/metabolism , Plant Extracts/pharmacology , Rumen/metabolism , Animal Feed/analysis
20.
Trends Plant Sci ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042677

ABSTRACT

Climate changes have unpredictable effects on ecosystems and agriculture. Plants adapt metabolically to overcome these challenges, with plant secondary metabolites (PSMs) being crucial for plant-environment interactions. Thus, understanding how PSMs respond to climate change is vital for future cultivation and breeding strategies. Here, we review PSM responses to climate changes such as elevated carbon dioxide, ozone, nitrogen deposition, heat and drought, as well as a combinations of different factors. These responses are complex, depending on stress dosage and duration, and metabolite classes. We finally identify mechanisms by which climate change affects PSM production ecologically and molecularly. While these observations provide insights into PSM responses to climate changes and the underlying regulatory mechanisms, considerable further research is required for a comprehensive understanding.

SELECTION OF CITATIONS
SEARCH DETAIL