Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Plants (Basel) ; 12(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005701

ABSTRACT

Lilies are well-known flowers with large anthers and a high quantity of pollen that easily contaminates clothing and tepals. The anthers need to be artificially removed, leading to production problems. Cultivating male-sterile or pollen-free lilies could solve these problems. The key period of male sterility in a specific male-sterile hybrid lily population was determined through cytological observation. The contents of hormones, soluble sugar, soluble protein, and proline were determined by high-performance liquid chromatography, tandem mass spectrometry and colorimetry. Transcriptome sequencing was used to identify the genes with altered expression. The key period of male sterility was determined to be the microspore mother and tetrad stages. The hormone contents were abnormal in the sterile line compared with the fertile line. The indole-3-acetic acid (IAA) content was higher in the sterile line than in the fertile line at all stages, while the gibberellic acid 4 (GA4) content showed the opposite result. Abscisic acid (ABA) accumulated in the sterile line in both the microspore mother and tetrad stages, and the zeatin riboside (ZR) content in the sterile line increased at the microspore mother stage but decreased at the tetrad stage. The contents of soluble sugar, soluble protein and proline were higher in the fertile line than in the sterile line. Genes involved in auxin and ABA synthesis and signalling pathways were highly expressed in the male-sterile line. Our data suggested that abnormal contents of hormones in the microspore mother and tetrad stages resulted in pollen abortion in a male-sterile hybrid lily population, which indicated that the hormone balance in specific stages plays critical functions in pollen development in lilies.

2.
Front Plant Sci ; 14: 1065032, 2023.
Article in English | MEDLINE | ID: mdl-36890893

ABSTRACT

Apomixis is the asexual reproduction through seeds that leads to the production of genetically uniform progeny. It has become an important tool in plant breeding because it facilitates the retention of genotypes with desirable traits and allows seeds to be obtained directly from mother plants. Apomixis is rare in most economically important crops, but it occurs in some Malus species. Here, the apomictic characteristics of Malus were examined using four apomictic and two sexually reproducing Malus plants. Results from transcriptome analysis showed that plant hormone signal transduction was the main factor affecting apomictic reproductive development. Four of the apomictic Malus plants examined were triploid, and pollen was either absent or present in very low densities in the stamen. Variation in the presence of pollen was associated with variation in the apomictic percentage; specifically, pollen was absent in the stamens of tea crabapple plants with the highest apomictic percentage. Furthermore, pollen mother cells failed to progress normally into meiosis and pollen mitosis, a trait mostly observed in apomictic Malus plants. The expression levels of meiosis-related genes were upregulated in apomictic plants. Our findings indicate that our simple method of detecting pollen abortion could be used to identify apple plants that are capable of apomictic reproduction.

3.
Plant Cell Environ ; 46(5): 1453-1471, 2023 05.
Article in English | MEDLINE | ID: mdl-36691352

ABSTRACT

High temperatures (HT) cause pollen abortion and poor floret fertility in rice, which is closely associated with excessive accumulation of reactive oxygen species (ROS) in the developing anthers. However, the relationships between accumulation of abscisic acid (ABA) and ROS, and their effects on tapetum-specific programmed cell death (PCD) in HT-stressed anthers are poorly characterised. Here, we determined the spatiotemporal changes in ABA and ROS levels, and their relationships with tapetal PCD under HT exposure. Mutants lacking ABA-activated protein kinase 2 (SAPK2) functions and exogenous ABA treatments were used to explore the effects of ABA signalling on the induction of PCD and ROS accumulation during pollen development. HT-induced pollen abortion was tightly associated with ABA accumulation and oxidative stress. The higher ABA level in HT-stressed anthers resulted in the earlier initiation of PCD induction and subsequently abnormal tapetum degeneration by activating ROS accumulation in developing anthers. Interactions between SAPK2 and DEAD-box ATP-dependent RNA helicase elF4A-1 (RH4) were required for ABA-induced ROS generation in developing anthers. The OsSAPK2 knockout mutants showed the impaired PCD responses in the absence of HT. However, the deficiency of SAPK2 functions did not suppress the ABA-mediated ROS generation in HT-stressed anthers.


Subject(s)
Oryza , Reactive Oxygen Species/metabolism , Oryza/physiology , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Mitogen-Activated Protein Kinase 11/genetics , Mitogen-Activated Protein Kinase 11/metabolism , Pollen/physiology , Apoptosis/genetics , Heat-Shock Response , Gene Expression Regulation, Plant
4.
Environ Pollut ; 316(Pt 2): 120653, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36400137

ABSTRACT

In 2010, a steel company was established in Santa Cruz, Rio de Janeiro. In 2012, silver rain raised concerns about human and environmental impacts. In 2013, the steel company signed an Adjustment of Conduct Term (ACT). To evaluate air pollution in the vicinity of the steel company based on a plant fertility assay before and after ACT implementation. A pollen abortion assay was implemented using flower buds of Bauhinia forficata in 2013 and Delonix regia in 2015. Sites over 5 km from the steel company, highways, and tunnels were classified as unexposed; sites 5 km from highway/tunnel were classified as exposed to other sources; and sites 5 km from the steel company were classified as exposed. Random plant collection occurred during the dry and rainy seasons (10 buds/site and 300 cells/slide). Aborted grains were analyzed using a 400-fold magnification microscope. Statistical analyses were considered significant at the 5% level. In 2013 were collected flower buds in 27 sites (2 unexposed, 18 highway/tunnel-exposed, and 7 steel company-exposed); and 34 sites in 2015 (14 unexposed, 18highway/tunnel-exposed, and 2 steel company-exposed). In both years, the mean pollen abortion was significantly higher in the dry season for sites exposed to highway/tunnel (p < 0.001) and the steel company (p = 0.005). In 2013, the mean pollen abortion was significantly higher in sites exposed to highway/tunnel compared to unexposed sites (p = 0.004) and in sites exposed to the steel company compared to sites exposed to highway/tunnel (p = 0.034). In 2015, compared to unexposed sites, the mean pollen abortion was significantly higher in sites exposed to highway/tunnel (p = 0.014) and the steel company (p < 0.001). Overall, compared to unexposed sites, the mean pollen abortion was 5.79-fold higher in sites exposed to the steel company and 4.08-fold higher in sites exposed to highway/tunnel. Compared to unexposed plants, greater air pollution effects occurred in plants exposed to the steel company before (2013) and after (2015)ACT implementation.


Subject(s)
Air Pollution , Female , Pregnancy , Humans , Brazil , Industry , Environmental Monitoring , Steel
5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293079

ABSTRACT

Cytoplasmic male sterility (CMS) lays a foundation for the utilization of heterosis in soybean. The soybean CMS line SXCMS5A is an excellent CMS line exhibiting 100% male sterility. Cytological analysis revealed that in SXCMS5A compared to its maintainer SXCMS5B, its tapetum was vacuolated and abnormally developed. To identify the genes and metabolic pathways involving in pollen abortion of SXCMS5A, a comparative transcriptome analysis was conducted between SXCMS5A and SXCMS5B using flower buds. A total of 372,973,796 high quality clean reads were obtained from 6 samples (3 replicates for each material), and 840 differentially expressed genes (DEGs) were identified, including 658 downregulated and 182 upregulated ones in SXCMS5A compared to SXCMS5B. Among them, 13 DEGs, i.e., 12 open reading frames (ORFs) and 1 COX2, were mitochondrial genome genes in which ORF178 and ORF103c were upregulated in CMS lines and had transmembrane domain(s), therefore, identified as CMS candidate mitochondrial genes of SXCMS5A. Furthermore, numerous DEGs were associated with pollen wall development, carbohydrate metabolism, sugar transport, reactive oxygen species (ROS) metabolism and transcription factor. Some of them were further confirmed by quantitative real time PCR analysis between CMS lines with the same cytoplasmic source as SXCMS5A and their respective maintainer lines. The amount of soluble sugar and adenosine triphosphate and the activity of catalase and ascorbic acid oxidase showed that energy supply and ROS scavenging decreased in SXCMS5A compared to SXCMS5B. These findings provide valuable information for further understanding the molecular mechanism regulating the pollen abortion of soybean CMS.


Subject(s)
Glycine max , Plant Infertility , Glycine max/metabolism , Plant Infertility/genetics , Reactive Oxygen Species/metabolism , Catalase/metabolism , Gene Expression Regulation, Plant , Cyclooxygenase 2/metabolism , Gene Expression Profiling , Pollen/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Transcriptome , Sugars/metabolism , Transcription Factors/metabolism , Ascorbic Acid/metabolism , Adenosine Triphosphate/metabolism , Flowers/genetics , Flowers/metabolism
6.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216116

ABSTRACT

1258A is a new line of B.napus with Nsa cytoplasmic male sterility (CMS) with potential applications in hybrid rapeseed breeding. Sterile cytoplasm was obtained from XinJiang Sinapis arvensis through distant hybridization and then backcrossed with 1258B for many generations. However, the characteristics and molecular mechanisms underlying pollen abortion in this sterile line are poorly understood. In this study, a cytological analysis revealed normal microsporogenesis and uninucleate pollen grain formation. Pollen abortion was due to non-programmed cell death in the tapetum and the inability of microspores to develop into mature pollen grains. Sucrose, soluble sugar, and adenosine triphosphate (ATP) contents during microspore development were lower than those of the maintainer line, along with an insufficient energy supply, reduced antioxidant enzyme activity, and substantial malondialdehyde (MDA) accumulation in the anthers. Transcriptome analysis revealed that genes involved in secondary metabolite biosynthesis, glutathione metabolism, phenylpropane biosynthesis, cyanoamino acid metabolism, starch and sucrose metabolism, and glycerolipid metabolism may contribute to pollen abortion. The down regulation of nine cytochrome P450 monooxygenases genes were closely associated with pollen abortion. These results suggest that pollen abortion in 1258A CMS stems from abnormalities in the chorioallantoic membranes, energy deficiencies, and dysfunctional antioxidant systems in the anthers. Our results provide insight into the molecular mechanism underlying pollen abortion in Nsa CMS and provide a theoretical basis for better heterosis utilization in B.napus.


Subject(s)
Brassica napus/genetics , Cytoplasm/genetics , Hybridization, Genetic/genetics , Plant Proteins/genetics , Transcriptome/genetics , Cytosol/physiology , Flowers/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Gene Ontology , Plant Breeding/methods , Plant Infertility/genetics , Pollen/genetics , Starch/genetics
7.
Genes (Basel) ; 14(1)2022 12 27.
Article in English | MEDLINE | ID: mdl-36672819

ABSTRACT

Most bamboos die after flowering, and the molecular mechanisms responsible for flowering is poorly understood. The MIKCc-type MADS-box family gene is involved in the flowering process. To explore the mechanism of the MIKCc-type MADS-box gene and phytohormone regulation in the flowering of Dendrocalamus latiflorus Munro (D. latiflorus), characterized by extremely rapid growth and widely cultivated woody bamboo, we initially did a genome-wide analysis of the MIKCc-type MADS-box gene in D. latiflorus. In the meantime, transcriptome analysis was performed using the floral organs. A total of 170 MIKCc-Type MADS-Box genes were identified and divided into 15 categories. The cis-acting element analysis in promoters regions revealed that MIKC-type MADS-box family genes were associated with hormones, including auxin, abscisic acid (ABA), gibberellin (GA) and jasmonic acid (JA), which was found at 79, 476, 96, 486 sites and cover 61, 103, 73, 128 genes. Genome synteny analysis showed subgenome AA and BB were better than CC and obtained 49, 40, 39 synteny genes compared with Oryza sativa (O. sativa). In transcriptome analysis of floral organs, the enriched pathway from DEGs included circadian, vernalization and gibberellin pathways associated with the flowering process. We found that the jasmonic acid synthesis gene is highly expressed in the pistil, which may be the cause of Ma bamboo pollen abortion. The expression profile showed that most MIKC-type MADS-box genes exhibited high expression in flower organs. The consequences of this study will provide insight into the irregular flowering and low pollen counts of Ma bamboo.


Subject(s)
Oryza , Transcriptome , Gibberellins , Gene Expression Profiling , Oryza/genetics
8.
Plant Mol Biol ; 104(1-2): 151-171, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32656674

ABSTRACT

KEY MESSAGE: Pollen abortion could be mainly attributed to abnormal meiosis in the mutant. Multiomics analysis uncovered significant epigenetic variations between the mutant and its wild type during the pollen abortion process. Male sterility caused by aborted pollen can result in seedless fruit. A seedless Ponkan mandarin mutant (bud sport) was used to compare the transcriptome, methylome, and metabolome with its progenitor to understand the mechanism of citrus pollen abortion. Cytological observations showed that the anther of the mutant could form microspore mother cells, although the microspores failed to develop fertile pollen at the anther dehiscence stage. Based on pollen phenotypic analysis, pollen abortion could be mainly attributed to abnormal meiosis in the mutant. A transcriptome analysis uncovered the molecular mechanisms underlying pollen abortion between the mutant and its wild type. A total of 5421 differentially expressed genes were identified, and some of these genes were involved in the meiosis, hormone biosynthesis and signaling, carbohydrate, and flavonoid pathways. A total of 50,845 differentially methylated regions corresponding to 15,426 differentially methylated genes in the genic region were found between the mutant and its wild type by the methylome analysis. The expression level of these genes was negatively correlated with their methylation level, especially in the promoter regions. In addition, 197 differential metabolites were identified between the mutant and its wild type based on the metabolome analysis. The transcription and metabolome analysis further indicated that the expression of genes in the flavonoid, carbohydrate, and hormone metabolic pathways was significantly modulated in the pollen of the mutant. These results indicated that demethylation may alleviate the silencing of carbohydrate genes in the mutant, resulting in excessive starch and sugar hydrolysis and thereby causing pollen abortion in the mutant.


Subject(s)
Citrus/metabolism , Epigenome , Metabolome , Plant Proteins/metabolism , Pollen/metabolism , Transcriptome , Citrus/cytology , Citrus/genetics , Citrus/growth & development , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Meiosis , Plant Growth Regulators/metabolism , Plant Infertility/genetics , Plant Infertility/physiology , Plant Proteins/genetics , Pollen/genetics , Sequence Analysis
9.
Genes (Basel) ; 11(7)2020 07 09.
Article in English | MEDLINE | ID: mdl-32659993

ABSTRACT

The homologous leucine zipper/EF-hand-containing transmembranes (LETMs) are highly conserved across a broad range of eukaryotic organisms. The LETM functional characteristics involved in biological process have been identified primarily in animals, but little is known about the LETM biological function mode in plants. Based on the results of the current investigation, the GhLETM1 gene crucially affects filament elongation and anther dehiscence of the stamen in cotton. Both excessive and lower expression of the GhLETM1 gene lead to defective stamen development, resulting in shortened filaments and indehiscent anthers with pollen abortion. The results also showed that the phenotype of the shortened filaments was negatively correlated with anther defects in the seesaw model under the ectopic expression of GhLETM1. Moreover, our results notably indicated that the gene requires accurate expression and exhibits a sensitive dose effect for its proper function. This report has important fundamental and practical significance in crop science, and has crucial prospects for genetic engineering of new cytoplasmic male sterility lines and breeding of crop hybrid varieties.


Subject(s)
Gene Dosage , Gossypium/genetics , Plant Infertility , Pollen/genetics , EF Hand Motifs , Gossypium/physiology , Leucine Zippers , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/physiology
10.
J Exp Bot ; 71(14): 4010-4019, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32242227

ABSTRACT

The ubiquitin (Ub)/26S proteasome system (UPS) plays a key role in plant growth, development, and survival by directing the turnover of numerous regulatory proteins. In the UPS, the ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains function as hubs for ubiquitin-mediated protein degradation. Radiation sensitive 23 (RAD23), which has been identified as a UBL/UBA protein, contributes to the progression of the cell cycle, stress responses, ER proteolysis, and DNA repair. Here, we report that pollen development is arrested at the microspore stage in a rad23b null mutant. We demonstrate that RAD23B can directly interact with KIP-related protein 1 (KRP1) through its UBL-UBA domains. In addition, plants overexpressing KRP1 have defects in pollen development, which is a phenotype similar to the rad23b mutant. RAD23B promotes the degradation of KRP1 in vivo, which is accumulated following treatment with the proteasome inhibitor MG132. Our results indicate that RAD23B plays an important in pollen development by controlling the turnover of the key cell cycle protein, KRP1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Cycle Proteins , DNA-Binding Proteins , Pollen/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin
11.
BMC Plant Biol ; 20(1): 10, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31910796

ABSTRACT

BACKGROUND: Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis and various types of CMS often have different abortion mechanisms. Therefore, it is important to understand the molecular mechanisms related to anther abortion in wheat, which remain unclear at present. RESULTS: In this study, five isonuclear alloplasmic male sterile lines (IAMSLs) and their maintainer were investigated. Cytological analysis indicated that the abortion type was identical in IAMSLs, typical and stainable abortion, and the key abortive period was in the binucleate stage. Most of the 1,281 core shared differentially expressed genes identified by transcriptome sequencing compared with the maintainer in the vital abortive stage were involved in the metabolism of sugars, oxidative phosphorylation, phenylpropane biosynthesis, and phosphatidylinositol signaling, and they were downregulated in the IAMSLs. Key candidate genes encoding chalcone--flavonone isomerase, pectinesterase, and UDP-glucose pyrophosphorylase were screened and identified. Moreover, further verification elucidated that due to the impact of downregulated genes in these pathways, the male sterile anthers were deficient in sugar and energy, with excessive accumulations of ROS, blocked sporopollenin synthesis, and abnormal tapetum degradation. CONCLUSIONS: Through comparative transcriptome analysis, an intriguing core transcriptome-mediated male-sterility network was proposed and constructed for wheat and inferred that the downregulation of genes in important pathways may ultimately stunt the formation of the pollen outer wall in IAMSLs. These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results was helpful for studying the abortive interaction mechanism in CMS wheat.


Subject(s)
Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Plant Infertility/genetics , Transcriptome/genetics , Triticum , Biopolymers/metabolism , Carotenoids/metabolism , Flowers/cytology , Flowers/ultrastructure , Gene Expression Profiling/methods , Gene Ontology/statistics & numerical data , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Infertility/physiology , Plant Proteins/genetics , Pollen/cytology , Pollen/ultrastructure , Reactive Oxygen Species/metabolism , Sugars/metabolism , Triticum/cytology , Triticum/genetics , Triticum/metabolism
12.
Protoplasma ; 256(6): 1545-1556, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31201531

ABSTRACT

Mangosteen (Garcinia mangostana L.) is an economically important tropical fruit, yet the reproductive biology of this dioecious plant is complex. Male trees are not known, and female trees have sterile anthers leading to apomixis. We hypothesized that pollen abortion in mangosteen is due to altered tapetum activity during microgametogenesis. Developmental events at the cellular and sub-cellular levels during pollen development in G. mangostana were therefore examined and compared with seashore mangosteen (G. celebica L.), a closely related species with fertile anthers. In G. mangostana, the microspore mother cell had disorganized cytoplasm, including lack of Golgi apparatus and its vesicles, as well as abnormal callose wall accumulation. Globular droplets, which resembled orbicules or Ubisch bodies, were abundant in the locule, including pre-Ubisch bodies found along the tapetal plasma membrane. The tapetum of G. mangostana underwent cell death earlier than the fertile G. celebica, and during the premature death, the mitochondria had dramatically altered shapes. Low accumulation of starch in collapsed microspore mother cells and tetrad cell remnants also suggested that altered cell metabolism is related to pollen abortion in mangosteen. The present results demonstrate the importance of coordinated development between the tapetum and microspores in pollen development and provide new insights into male sterility in mangosteen (G. mangostana).


Subject(s)
Garcinia mangostana/chemistry , Plant Infertility/genetics , Pollen/chemistry
13.
Int J Mol Sci ; 20(7)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30939734

ABSTRACT

In plants, pollen grain transfers the haploid male genetic material from anther to stigma, both between flowers (cross-pollination) and within the same flower (self-pollination). In order to better understand chemical hybridizing agent (CHA) SQ-1-induced pollen abortion in wheat, comparative cytological and proteomic analyses were conducted. Results indicated that pollen grains underwent serious structural injury, including cell division abnormality, nutritional deficiencies, pollen wall defect and pollen grain malformations in the CHA-SQ-1-treated plants, resulting in pollen abortion and male sterility. A total of 61 proteins showed statistically significant differences in abundance, among which 18 proteins were highly abundant and 43 proteins were less abundant in CHA-SQ-1 treated plants. 60 proteins were successfully identified using MALDI-TOF/TOF mass spectrometry. These proteins were found to be involved in pollen maturation and showed a change in the abundance of a battery of proteins involved in multiple biological processes, including pollen development, carbohydrate and energy metabolism, stress response, protein metabolism. Interactions between these proteins were predicted using bioinformatics analysis. Gene ontology and pathway analyses revealed that the majority of the identified proteins were involved in carbohydrate and energy metabolism. Accordingly, a protein-protein interaction network involving in pollen abortion was proposed. These results provide information for the molecular events underlying CHA-SQ-1-induced pollen abortion and may serve as an additional guide for practical hybrid breeding.


Subject(s)
Plant Infertility , Pollen/genetics , Proteome/metabolism , Triticum/genetics , Oxidative Stress , Pollen/growth & development , Pollen/metabolism , Proteome/genetics , Triticum/physiology
14.
Plant Mol Biol ; 98(3): 233-247, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30203234

ABSTRACT

KEY MESSAGE: Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.


Subject(s)
Chrysanthemum/physiology , Pollen/physiology , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Plant/physiology , Plant Infertility/genetics , Pollen/cytology
15.
Electron. j. biotechnol ; 35: 25-32, sept. 2018. graf, ilus
Article in English | LILACS | ID: biblio-1047765

ABSTRACT

Background: Pollen development is an important reproductive process that directly affects pollen fertility and grain yield in rice. Argonaute (AGO) proteins, the core effectors of RNA-mediated silencing, play important roles in regulating plant growth and development. However, few AGO proteins in rice were reported to be involved in pollen development. In this study, artificial microRNA technology was used to assess the function of OsAGO17 in pollen development. Results: In this study, OsAGO17, a rice-specific gene, was specifically expressed in rice pollen grains, with the highest expression in uninucleate microspores. Downregulation of OsAGO17 by artificial microRNA technology based on the endogenous osa-miRNA319a precursor was successfully achieved. It is found that downregulation of OsAGO17 could significantly affect pollen fertility and cause pollen abortion, thus suggesting that OsAGO17 functions in rice pollen development. In addition, the downregulation of OsAGO17 mainly caused a low seed-setting rate, thereby resulting in the reduction of grain yield, whereas the downregulation of OsAGO17 did not significantly affect rice vegetative growth and other agricultural traits including number of florets per panicle, number of primary branch per panicle, and 100-grain weight. Furthermore, the result of subcellular localization analysis indicated that the OsAGO17 protein was localized to both the nucleus and the cytoplasm. Conclusion: These results represent the first report of the biological function for OsAGO17 in rice and indicate that OsAGO17 may possibly play crucial regulatory roles in rice pollen development. It helps us to better understand the mechanism of pollen development in rice.


Subject(s)
Pollen/growth & development , Oryza/growth & development , Down-Regulation , Argonaute Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , MicroRNAs , RNA Interference , Fertility , Argonaute Proteins/genetics
16.
Gene ; 641: 8-17, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29031775

ABSTRACT

CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper.


Subject(s)
Capsicum/genetics , Cell Cycle Proteins/metabolism , Meiosis/genetics , Methyltransferases/metabolism , Plant Infertility/genetics , Pollen/genetics , Cell Cycle Proteins/genetics , DNA Damage/genetics , Flowers/metabolism , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Meiosis/physiology , Methyltransferases/genetics , Transcriptome/genetics
17.
Environ Int ; 99: 161-169, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27866722

ABSTRACT

The majority of epidemiological studies correlate the cardiorespiratory effects of air pollution exposure by considering the concentrations of pollutants measured from conventional monitoring networks. The conventional air quality monitoring methods are expensive, and their data are insufficient for providing good spatial resolution. We hypothesized that bioassays using plants could effectively determine pollutant gradients, thus helping to assess the risks associated with air pollution exposure. The study regions were determined from different prevalent respiratory death distributions in the Sao Paulo municipality. Samples of tree flower buds were collected from twelve sites in four regional districts. The genotoxic effects caused by air pollution were tested through a pollen abortion bioassay. Elements derived from vehicular traffic that accumulated in tree barks were determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF). Mortality data were collected from the mortality information program of Sao Paulo City. Principal component analysis (PCA) was applied to the concentrations of elements accumulated in tree barks. Pearson correlation and exponential regression were performed considering the elements, pollen abortion rates and mortality data. PCA identified five factors, of which four represented elements related to vehicular traffic. The elements Al, S, Fe, Mn, Cu, and Zn showed a strong correlation with mortality rates (R2>0.87) and pollen abortion rates (R2>0.82). These results demonstrate that tree barks and pollen abortion rates allow for correlations between vehicular traffic emissions and associated outcomes such as genotoxic effects and mortality data.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Lung Neoplasms/mortality , Plant Bark/chemistry , Pollen/chemistry , Pulmonary Disease, Chronic Obstructive/mortality , Vehicle Emissions/analysis , Aged , Aged, 80 and over , Brazil/epidemiology , Humans , Lung Neoplasms/chemically induced , Middle Aged , Pulmonary Disease, Chronic Obstructive/chemically induced
18.
Front Plant Sci ; 8: 2150, 2017.
Article in English | MEDLINE | ID: mdl-29312399

ABSTRACT

Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

19.
Environ Sci Pollut Res Int ; 23(15): 14730-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-25779110

ABSTRACT

Cytostatic drugs are among the most toxic chemicals which are produced. Many of them cause damage of the genetic material which may affect the fertility of higher organisms. To study the impact of the widely used anticancer drugs [cisplatin (CisPt), etoposide (Et), and 5-fluorouracil (5-FU)] on the reproduction of higher plants, pollen abortion experiments were conducted with species which belong to major plant families, namely with Tradescantia paludosa (Commelinaceae), Arabidopsis thaliana (Brassicaceae), Chelidonium majus (Papaveraceae), and Alisma plantago-aquatica (Alismataceae). All compounds increased the frequencies of abortive grains. The lowest effective doses were in general in a narrow range (i.e., 1 and 10 mg/kg of dry soil). The effects of the individual drugs were similar in T. paludosa, A. plantago-aquatica, and Ch. majus, while A. thaliana was consistently less sensitive. The highest abortion rate was obtained in most experiments with CisPt, followed by 5-FU and Et. Comparisons of the doses which caused effects in the present experiments in the different species with the predicted environment concentrations and with the levels of the cytostatics which were detected in hospital wastewaters show that the realistic environmental concentrations of the drugs are 4-6 orders of magnitude lower. Therefore, it is unlikely that these drugs affect the fertility of higher plants in aquatic and terrestrial ecosystems.


Subject(s)
Cisplatin/toxicity , Cytostatic Agents/toxicity , Etoposide/toxicity , Fluorouracil/toxicity , Magnoliopsida/drug effects , Pollen/drug effects , Fertility/drug effects
20.
Environ Sci Pollut Res Int ; 23(21): 21187-21194, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26662301

ABSTRACT

The extension of pollutant accumulation in plant leaves associated with its genotoxicity is a common approach to predict the quality of outdoor environments. However, this approach has not been used to evaluate the environmental quality of outdoor smoking areas. This study aims to evaluate the effects of environmental tobacco smoke (ETS) by assessing particulate matter 2.5 µm (PM2.5) levels, the pollen abortion assay, and trace elements accumulated in plant leaves in an outdoor smoking area of a hospital. For this, PM2.5 was measured by active monitoring with a real time aerosol monitor for 10 days. Eugenia uniflora trees were used for pollen abortion and accumulated element assays. Accumulated elements were also assessed in Tradescantia pallida leaves. The median concentration of PM2.5 in the smoking area in all days of monitoring was 66 versus 34 µg/m3 in the control area (P < 0.001). In addition, the elements Al, Cd, Cu, Ni, Pb, Rb, Sb, Se, and V in Tradescantia pallida and Al, Ba, Cr, Cu, Fe, Mg, Pb, and Zn in Eugenia uniflora were in higher concentration in the smoking area when compared to control area. Smoking area also showed higher rate of aborted grains (26.1 ± 10.7 %) compared with control (17.6 ± 4.5 %) (P = 0.003). Under the study conditions, vegetal biomonitoring proved to be an effective tool for assessing ETS exposure in outdoor areas. Therefore, vegetal biomonitoring of ETS could be a complement to conventional analyses and also proved to be a cheap and easy-handling tool to assess the risk of ETS exposure in outdoor areas.


Subject(s)
Environmental Monitoring , Particulate Matter/analysis , Tradescantia/chemistry , Plant Leaves/chemistry , Pollen/chemistry , Tobacco Smoke Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL