Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Endocr Disord ; 24(1): 48, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632599

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is known to have obesity as a risk factor. Body mass index cannot distinguish between lean mass and fat mass. We aimed to examine the association between predicted fat mass, predicted lean mass, predicted percent fat and risk of T2DM in Japanese adults. We also explored whether these three new parameters could predict T2DM better than other obesity markers. METHODS: This present study is a secondary data analysis. The study enrolled 20,944 Japanese individuals who participated in the NAGALA medical assessment program between 2004 and 2015. 15,453 participants who are eligible and have complete information were included to our analysis. Through the use of Kaplan-Meier curve, restricted cubic spline and univariate and multivariate Cox regression analysis, the relationship between predicted fat mass, predicted lean mass, predicted percent fat and T2DM risk was examined. The area under the curve method was used to assess the differences between these markers of obesity. RESULTS: A total of 373 cases of T2DM occurred over a median time of 5.4 years. In the male group, we found a U-shaped connection between predicted fat mass, predicted lean mass, and T2DM onset (p value, non-linearity < 0.05). A linear relationship was found between predicted percent fat and T2DM onset. The linear relationship was also found in the female group for predicted fat mass, and predicted percent fat. And for women, predicted lean mass was not an independent predictor. The area under the curve (AUC) for predicted fat mass, predicted lean mass, predicted percent fat in men was 0.673 (95%CI: 0.639 ~ 0.707), 0.598 (95%CI: 0.561 ~ 0.635), 0.715 (95%CI: 0.684 ~ 0.745), respectively. In males, WHtR was the strongest predictor (AUC 0.7151, 95%CI: 0.684 ~ 0.746), followed by predicted percent fat (AUC 0.7150, 95%CI: 0.684 ~ 0.745). In the females, WHtR was also the strongest predictor (AUC 0.758, 95%CI: 0.703 ~ 0.813), followed by body mass index (AUC 0.757, 95%CI: 0.704 ~ 0.811) and predicted percent fat (AUC 0.742, 95%CI: 0.687 ~ 0.798). CONCLUSION: Predicted fat mass, predicted lean mass, predicted percent fat were strongly connected with an increased risk for developing T2DM in Japanese, particularly in males. WHtR and predicted percent fat had a slightly better discrimination than other common obesity indicators in males. In the females, predicted fat mass and predicted percent fat were associated with T2DM risk, WHtR and body mass index had the slightly higher predictive power.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Humans , Male , Female , Diabetes Mellitus, Type 2/complications , Retrospective Studies , Japan , Risk Factors , Obesity/complications , Body Mass Index
2.
Front Nutr ; 10: 1093438, 2023.
Article in English | MEDLINE | ID: mdl-37229472

ABSTRACT

Objective: The relationship between body composition fat mass (FM) and lean body mass (LBM) and diabetes risk is currently debated, and the purpose of this study was to examine the association of predicted FM and LBM with diabetes in both sexes. Methods: The current study was a secondary analysis of data from the NAGALA (NAfld in the Gifu Area, Longitudinal Analysis) cohort study of 15,463 baseline normoglycemic participants. Predicted LBM and FM were calculated for each participant using anthropometric prediction equations developed and validated for different sexes based on the National Health and Nutrition Examination Survey (NHANES) database, and the outcome of interest was diabetes (types not distinguished) onset. Multivariate Cox regression analyses were applied to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of predicted FM and LBM with diabetes risk and further visualized their associations using a restricted cubic spline function. Results: The incidence density of diabetes was 3.93/1000 person-years over a mean observation period of 6.13 years. In women, predicted LBM and FM were linearly associated with diabetes risk, with each kilogram increase in predicted LBM reducing the diabetes risk by 65% (HR 0.35, 95%CI 0.17, 0.71; P < 0.05), whereas each kilogram increase in predicted FM increased the diabetes risk by 84% (HR 1.84, 95%CI 1.26, 2.69; P < 0.05). In contrast, predicted LBM and FM were non-linearly associated with diabetes risk in men (all P for non-linearity < 0.05), with an L-shaped association between predicted LBM and diabetes risk and a saturation point that minimized the risk of diabetes was 45.4 kg, while predicted FM was associated with diabetes risk in a U-shape pattern and a threshold point with the lowest predicted FM-related diabetes risk was 13.76 kg. Conclusion: In this Asian population cohort, we found that high LBM and low FM were associated with lower diabetes risk according to anthropometric equations. Based on the results of the non-linear analysis, we believed that it may be appropriate for Asian men to keep their LBM above 45.4 kg and their FM around 13.76 kg.

3.
Front Nutr ; 10: 1103665, 2023.
Article in English | MEDLINE | ID: mdl-36742435

ABSTRACT

Objective: High body mass index (BMI) is an important risk factor for non-alcoholic fatty liver disease (NAFLD). However, the association of body composition such as fat mass (FM) and lean body mass (LBM) with NAFLD has not been adequately studied. The purpose of this study was to clarify the contribution of body composition FM and LBM to NAFLD. Methods: We analyzed data from 7,411 men and 6,840 women in the NAGALA cohort study. LBM and FM were estimated for all subjects using validated anthropometric prediction equations previously developed from the National Health and Nutrition Examination Survey (NHANES). Using multiple logistic regression and restricted cubic spline (RCS) to analyze the association and the dose-response curve of predicted LBM and FM with NAFLD in both sexes. Results: The prevalence of NAFLD in man and woman subjects was 27.37 and 6.99%, respectively. Predicted FM was positively and linearly associated with NAFLD in both sexes, with each 1 kg increase in predicted FM associated with a 27 and 40% increased risk of NAFLD in men and women, respectively. In contrast, predicted LBM was negatively associated with NAFLD in both sexes, with each 1 kg increase in predicted LBM reducing the risk of NAFLD by 4 and 19% in men and women, respectively. In addition, according to the RCS curve, the risk of NAFLD did not change in men when the predicted LBM was between 47 and 52 kg, and there seemed to be a saturation effect; further, the threshold value of the saturation effect was calculated to be about 52.08 kg by two-piecewise logistic regression, and the protective effect on NAFLD would be significantly enhanced when the man predicted LBM was greater than 52.08 kg. Conclusion: The current findings suggested that body composition LBM and FM had opposite associations with NAFLD in both sexes, with higher LBM associated with a lower risk of NAFLD and higher FM increasing the risk of NAFLD, especially in women.

4.
J Cachexia Sarcopenia Muscle ; 13(2): 1064-1075, 2022 04.
Article in English | MEDLINE | ID: mdl-35068076

ABSTRACT

BACKGROUND: Studies on the prospective association of body composition with mortality in US general populations are limited. We aimed to examine this association by utilizing data from the National Health and Nutrition Examination Survey (NHANES), a representative sample of US adults, linked with data from the National Death Index. METHODS: We analysed data of NHANES 1988-1994 and 1999-2014, with 55 818 participants [50.6% female, baseline mean age: 45.0 years (SE, 0.2)]. Predicted fat mass and lean mass were calculated using the validated sex-specific anthropometric prediction equations developed by the NHANES based on individual age, race, height, weight, and waist circumference. Body composition and other covariates were measured at only one time point. Multivariable Cox regression was used to investigate the associations of predicted fat mass and lean mass with overall and cause-specific mortality, adjusting for potential confounders. Interactions between age and body composition on mortality were examined with likelihood ratio testing. RESULTS: Mean predicted fat mass was 24.1 kg [95% confidence interval (CI): 23.9-24.3) for male participants and 29.9 kg (95% CI: 29.6-30.1) for female participants, while mean predicted lean mass was 59.3 kg (95% CI: 59.1-59.5) for male participants and 41.7 kg (95% CI: 41.5-41.8) for female participants. During a median period of 9.7 years from the survey, 10 408 deaths occurred. When predicted fat and lean mass were both included in the model, predicted fat mass showed a U-shaped association with all-cause mortality, with significantly higher risk at two ends: Quintile 1 (HR, 1.17; 95% CI: 1.05-1.31), Quintile 2 (HR, 1.14; 95% CI: 1.04-1.26) and Quintile 5 (HR, 1.37; 95% CI: 1.12-1.68) compared with Quintile 3. In contrast, predicted lean mass showed a L-shaped association with all-cause mortality, with higher mortality in those with lower lean mass: Quintile 1 (HR, 1.64; 95% CI: 1.46-1.83) and Quintile 2 (HR, 1.29; 95% CI: 1.18-1.42) compared with Quintile 3. Similar results were found for cardiovascular, cancer, and respiratory cause-specific mortality. Age was a significant modifier: There was a monotonic positive association of predicted fat mass with mortality in younger participants (<60 years), but an approximate J-shaped association in older participants (≥60 years) (P interaction <0.001); there was a stronger inverse association between predicted lean mass and mortality in older participants (≥60) compared with those <60 years (P interaction <0.001). CONCLUSIONS: In this US general population, predicted fat mass and lean mass were independent predictors for overall and cause-specific mortality. Age was a significant modifier on the associations.


Subject(s)
Body Composition , Adult , Aged , Anthropometry , Body Mass Index , Cause of Death , Female , Humans , Male , Middle Aged , Nutrition Surveys
SELECTION OF CITATIONS
SEARCH DETAIL