Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38068227

ABSTRACT

The pre-sintered preform (PSP) is an advanced technology for repairing the Ni-based superalloy blade in a turbine. In general, boron is added to the Ni-based superalloys in small quantities (<0.1 wt.%) to increase boundary strength and cohesivity. Despite this, the effect of high B content (>1.0 wt.%) on the microstructure evolution and mechanical properties in Ni-based superalloys for the PSP application is rarely studied. The variety, composition and evolution of the precipitates during solution heat treatment in the alloy with high B content were determined by EBSD, EPMA and SEM. The results indicate that Cr, W and Mo-rich M5B3 type borides precipitate from the matrix and its area fraction reaches up to about 8%. The area fraction of boride decreases with the prolonging of solution time and the increase of temperature higher than 1120 °C. The borides nearly disappear after solution treatment at 1160 °C for 2 h. The redissolution of boride and eutectic results in the formation of B-rich area with low incipient melting (about 1189 °C). It can bond metallurgically with the blade under the melting point of the blade, which decreases the precipitation of harmful phases of the blade after PSP repairing. The microhardness within the grain in the PSP work-blank first decreases (lower than 1160 °C) and then increases (higher than 1185 °C) with the increase of solution heat treatment temperature due to the dissolving and precipitation of borides. The tensile strength of the combination of PSP work-blank and Mar-M247 matrix at room temperature after solution treatment is related to the area fraction of boride, incipient melting and the cohesion between PSP work-blank and Mar-M247 matrix.

2.
Polymers (Basel) ; 15(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177227

ABSTRACT

Three-dimensional (3D) biodegradable polyglycolic acid fiber (PGA) preforms were developed as temporary scaffolds for three-dimensional tissue regeneration applications. Three-dimensional biodegradable polyglycolic acid fiber (PGA) preforms including various degrees of interlaced structures called 3D plain, semi-interlaced, and orthogonal woven preforms were designed. Analytical relations and finite element model-based software (TexGen) on fiber volume fraction and porosity fraction were proposed to predict scaffolds' stiffness and strength properties considering micromechanics relations. It was revealed that yarn-to-yarn space, density, and angles of all 3D PGA fiber preforms were heterogeneous and demonstrated direction-dependent features (anisotropy). Total fiber volume fractions (Vfp) and porosity fraction (Vtpr) predicted by analytic and numerical modelling of all 3D scaffolds showed some deviations compared to the measured values. This was because yarn cross-sections in the scaffolds were changed from ideal circular yarn (fiber TOW) geometry to high-order ellipse (lenticular) due to inter-fiber pressure generated under a tensile-based macrostress environment during preform formation. Z-yarn modulus (Ez-yarn) and strength (σz-yarn) were probably critical values due to strong stiffness and strength in the through-the-thickness direction where hydrogel modulus and strengths were negligibly small. Morphology of the scaffold showed that PGA fiber sets in the preform were locally distorted, and they appeared as inconsistent and inhomogeneous continuous fiber forms. Additionally, various porosity shapes in the preform based on the virtual model featured complex shapes from nearly trapezoidal beams to partial or concave rectangular beams and ellipsoid rectangular cylinders. It was concluded that 3D polyglycolic acid fiber preforms could be a temporary supportive substrate for 3D tissue regeneration because cells in the scaffold's thickness can grow via through-the-thickness fiber (z-yarn), including various possible mechanobiology mechanisms.

3.
Materials (Basel) ; 16(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049150

ABSTRACT

This article presents a new technology for forming automotive connecting rod forgings by means of die forging from cast performs from EN AB-71100 (EN AB-AlZn10Si8Mg) aluminum alloy. A premise was made that the production process would be carried out on forging presses. The process of forming connecting rod forgings was analyzed considering different deformation rates related to the type of machine used: a crank press and a screw press. The billet in the form of in-house designed, shaped preforms cast into sand molds with two variants of geometry was used in the process. The numerical analysis of the new process was carried out on the basis of the finite element method using Deform 3D, the simulation software for metal forming. The simulations were conducted in the spatial deformation conditions, considering the full thermomechanical analysis. Based on the simulations, certain important findings concerning the novel process were acquired, including the distribution of stress, deformation, temperatures, cracking criterion and energy parameters. The results of numerical tests confirmed the possibility of producing defect-free forgings of connecting rods from EN AB-71100 aluminum alloy on forging presses by means of the proposed technology. The proposed process of forging using crank and screw presses was verified in the course of tests conducted in industrial conditions. The properly formed connecting rod forgings were subjected to quality tests in terms of their structure and mechanical properties.

4.
Materials (Basel) ; 15(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36363416

ABSTRACT

The paper presents experimental results of the work conducted to improve the adhesion between alumina ceramics and urea-urethane elastomer in the interpenetrating phase composites (IPCs), in which these two phases are interpenetrating three-dimensionally and topologically throughout the microstructure. Measurements of the contact angle, surface roughness, and shear tests were used to evaluate the effectivity and select the quantity of a silane coupling agent and the ceramic fabrication method. The tests were conducted using samples of dense alumina ceramic obtained by three- or four-step methods. In the four-step process, hot isostatic pressing (HIP) was applied additionally. As a result of the coupling agent coat and HIP application, the ceramic substrate wettability by the elastomer was improved. The water contact angle was reduced from 80 to 60%. In the next step, porous ceramic preforms were fabricated using HIP sintering and a solution of silane coupling agent treated their surface. The composites were produced using vacuum-pressure infiltration of porous alumina ceramics by urea-urethane elastomer in liquid form. The influence of the coupling agent application on the microstructure and mechanical properties of the composites was estimated. The microstructure of the composites was identified using SEM microscopy and X-ray tomography. As a result of using the coupling agent, residual porosity decreased from 7 to 2%, and compressive strength, as well as stress at a plateau, increased by more than 20%, from 25 to 33 MPa and from 15 to 24 MPa, respectively, for the composites fabricated by infiltration ceramic preforms with 40% of porosity.

5.
Polymers (Basel) ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36236158

ABSTRACT

To accurately evaluate the mechanical performance of three-dimensional (3D) braiding composites, it is essential to consider the braiding process and generate realistic representative volume element (RVE) structures. An efficient simulation methodology based on truss elements was used to simulate the 3D four-directional (3D4D) braiding process utilizing the finite element method (FEM) on the macroscale. The goal was to obtain the spatial trajectories of yarns and establish the relationship between the braiding parameters and the preform structure. Based on the initial yarn topology, the yarns were discretized as bundles of virtual sub-yarns. Then, a temperature drop simulation using hybrid elements was implemented to deform the yarn cross-section and obtain the interior, surface, and corner cells on the mesoscale. The simulation results show good agreement with the experiment. A parametric study was deployed to identify the effect of the model input parameters on the computation cost and accuracy. Furthermore, the approach applies to the other braiding processes, such as the cylindrical braiding composite.

6.
Polymers (Basel) ; 14(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35566909

ABSTRACT

The mechanical properties of fiber-reinforced composites are highly dependent on the local fiber orientation. In this study, a low-cost yarn orientation reconstruction approach for the composite components' surface was built, utilizing binocular structured light detection technology to accomplish the effective fiber orientation detection of composite surfaces. It enables the quick acquisition of samples of the revolving body shape without blind spots with an electric turntable. Four collecting operations may completely cover the sample surface, the trajectory recognition coverage rate reached 80%, and the manual verification of the yarn space deviation showed good agreement with the automated technique. The results demonstrated that the developed system based on the proposed method can achieve the automatic recognition of yarn paths of views with different angles, which mostly satisfied quality control criteria in actual manufacturing processes.

7.
Materials (Basel) ; 15(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35629551

ABSTRACT

Traditional solid nanoparticle aerogels have been unable to meet the requirements of practical application due to their inherent brittleness and poor infrared shielding performance. Herein, combining vacuum impregnation and high-temperature pyrolysis, a novel micro/nano-composite fibrous aerogel was prepared via in situ synthesis of silicon carbide nanowires (SiC NWS) in mullite fiber (MF) preform. During this process, uniformly distributed SiC NWS in the MF preform serve as an enhancement phase and also act as an infrared shielding agent to reduce radiation heat transfer, which can significantly improve the mechanical properties of the mullite fiber/silicon carbide nanowire composite aerogels (MF/SiC NWS). The fabricated MF/SiC NWS exhibited excellent thermal stability (1400 °C), high compressive strength (~0.47 MPa), and outstanding infrared shielding performance (infrared transmittance reduced by ~70%). These superior properties make them appealing for their potential in practical application as high-temperature thermal insulators.

8.
Materials (Basel) ; 15(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35407987

ABSTRACT

In this study, compacted hematite (Fe2O3) preforms were made and sintered at various temperatures, such as 1250 °C and 1300 °C, using both conventional and microwave sintering methods. The density, porosity, microhardness, cold crushing strength, microphotographs, and X-ray diffraction (XRD) analysis of the sintered preforms were used to evaluate the performance of the two sintering methods. It was found that microwave sintered preforms possessed lesser porosity and higher density than conventionally sintered preforms owing to uniform heating of the powdered ore in microwave sintering method. Furthermore, it was also observed that microwave sintered preforms exhibited relatively higher cold crushing strength and hardness than conventionally sintered preforms. Thus, the overall results revealed that microwave sintering yielded better properties considered in the present study.

9.
Polymers (Basel) ; 14(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335448

ABSTRACT

The identification of thermomechanical in-plane shear behavior of preform is one of the most important factors to ensure the quality of the thermoplastic composites during the thermoforming process. In this present work, the non-symmetric in-plane shear behavior of flax/polypropylene 2D biaxial braided preform for thermoplastic biocomposites was characterized at elevated temperature chamber by using bias-extension test. Analytical models of a bias-extension test based on non-symmetric unit cell geometry for 2D biaxial braids were defined and applied; the thermo-condition-dependent experiments were conducted to study the temperature and displacement rate dependences. The influence of unit cell geometry parameters including braiding angle, tow waviness, and cover factor on the thermal in-plane shear behavior was deeply invested, experiments in both axial and transversal directions were performed for a complete study, and asymmetric scissor mechanisms for in-plane shear behavior were introduced and studied. Finally, a simulation of thermal impregnation distribution based on unit cell geometry was made to clarify the importance of the overall fiber volume fraction.

10.
Polymers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215605

ABSTRACT

The influences of reinforcement by tufting on the interlaminar shear performance of laminated preforms and composites are studied in the present paper. A modified T steel shearing test was established and used to achieve a pure Mode II loading (sliding). Dry tufted preform (DTP) and cured tufted composites (CTC) with varied tufting spacing are considered for the understanding of the role of infused resin and the tufting density on the mechanical properties. Meanwhile, knowledge about the role of infused resins is gained. Additionally, cured tufted composites without threads (CT'C) were prepared under the identical tufting density to evaluate the effect of tufting threads. The results show that the denser the tufting density, the stronger the interlaminar shear strength of CTC, its improvement reaches 12% compared to the non tufted composites. However, the decreased effect also exists for the tufting spacing of 9 mm. Therefore, the tufting density needs to be optimized during the tufting process to improve the interlaminar shear properties of tufted reinforcement and composites. On the contrary, tufting without thread does not affect its mechanical properties compared to the non tufted composites.

11.
Molecules ; 26(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34771071

ABSTRACT

This work developed novel jute-yarn, non-crimp, unidirectional (UD) preforms and their composites, with three different types of warp jute yarns of varying linear densities and twists in the dry UD preforms, in order to present a possible solution to the detrimental effects of higher yarn twists and crimp at the warp-weft yarn interlacements of traditional, woven, preform-based composites on their mechanical properties. In the developed UD preforms, warp jute yarns were placed in parallel by using a wooden picture-frame pin board, with the minimal number of glass weft yarns to avoid crimp at the warp-weft yarns interlacements, which can significantly enhance the load-bearing ability of UD composites compared to traditional, woven, preform composites. It was found that an optimal combination of jute warp yarn linear densities and twists in the UD preforms is important to achieve the best possible mechanical properties of newly developed UD composites, because it encourages a proper polymer-matrix impregnation on jute fibres, leading to excellent fibre-matrix interface bonding. Composites made from the 25 lb/spindle jute warp yarn linear density (UD25) exhibited higher tensile and flexural properties than other UD composites (UD20, UD30). All the UD composites showed a much better performance compared to the traditional woven preform composites (W20), which were obviously related to the higher crimp and yarn interlacements, less load-carrying capacity, and poor fiber-matrix interfaces of W20 composites. UD25 composites exhibited a significant enhancement in tensile modulus by ~232% and strength by ~146%; flexural modulus by 138.5% and strength by 145% compared to W20 composites. This reveals that newly developed, non-crimp, UD preform composites can effectively replace the traditional woven composites in lightweight, load-bearing, complex-shaped composite applications, and hence, this warrants further investigations of the developed composites, especially on long-term and dynamic-loading mechanical characterizations.

12.
Materials (Basel) ; 14(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34772144

ABSTRACT

The paper presents the experimental results of static and dynamic compressive tests conducted on ceramic-elastomer composites. The alumina ceramic preforms were fabricated by the four-step method: ceramic mixture preparation, consolidation under pressure, presintering, and sintering under pressure, respectively. To obtain ceramic preforms with a similar volume fraction of open pores, but with different pore sizes, alumina powder with different particle size and a ceramic binder were used, as well as pore-forming agents that were evenly distributed throughout the volume of the molding mass. The composites were obtained using vacuum pressure infiltration of porous alumina ceramic by urea-urethane elastomer in liquid form. As a result, the obtained composites were characterized by two phases that interpenetrated three-dimensionally and topologically throughout the microstructure. The microstructure of the ceramic preforms was revealed by X-ray tomography, which indicated that the alumina preforms had similar porosity of approximately 40% vol. but different pore diameter in the range of 6 to 34 µm. After composite fabrication, image analysis was carried out. Due to the microstructure of the ceramic preforms, the composites differed in the specific surface fraction of the interphase boundaries (Sv). The highest value of the Sv parameter was achieved for composite fabricated by infiltration method of using ceramic preform with the smallest pore size. Static and dynamic tests were carried out using different strain rate: 1.4·10-3, 7·10-2, 1.4·10-1, and 3·103 s-1. Compressive strength, stress at plateau zone, and absorbed energy were determined. It was found that the ceramic-elastomer composites' ability to absorb energy depended on the specific surface fraction of the interphase boundaries and achieved a value between 15.3 MJ/m3 in static test and 51.1 MJ/m3 for dynamic strain rate.

13.
Polymers (Basel) ; 13(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34577974

ABSTRACT

Multiaxis three-dimensional (3D) continuous polymeric carbon fiber/cementitious concretes were introduced. Their angular (off-axis) flexural properties were experimentally studied. It was found that the placement of the continuous carbon fibers and their in-plane angular orientations in the pristine concrete noticeably influenced the angular flexural strength and the energy absorption behavior of the multiaxis 3D concrete composite. The off-axis flexural strength of the uniaxial (C-1D-(0°)), biaxial (C-2D-(0°), and C-2D-(90°)), and multiaxial (C-4D-(0°), C-4D-(+45°) and C-4D-(-45°)) concrete composites were outstandingly higher (from 36.84 to 272.43%) than the neat concrete. Their energy absorption capacities were superior compared to the neat concrete. Fractured four directional polymeric carbon fiber/cementitious matrix concretes limited brittle matrix failure and a broom-like fracture phenomenon on the filament bundles, filament-matrix debonding and splitting, and minor filament entanglement. Multiaxis 3D polymeric carbon fiber concrete, especially the C-4D structure, controlled the crack phenomena and was considered a damage-tolerant material compared to the neat concrete.

14.
Materials (Basel) ; 14(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064023

ABSTRACT

Multiaxis three-dimensional (3D) continuous basalt fiber/cementitious concretes were manufactured. The novelty of the study was that the non-interlace preform structures were multiaxially created by placing all continious filamentary bundles in the in-plane direction of the preform via developed flat winding-molding method to improve the fracture toughness of the concrete composite. Principle and off-axis flexural properties of multiaxis three-dimensional (3D) continuous basalt fiber/cementitious concretes were experimentally studied. It was identified that the principle and off-axis flexural load-bearing, flexural strength and the toughness properties of the multiaxis 3D basalt concrete were extraordinarily affected by the continuous basalt filament bundle orientations and placement in the pristine concrete. The principle and off-axis flexural strength and energy absorption performance of the uniaxial (B-1D-(0°)), biaxial ((B-2D-(0°), B-2D-(90°) and B-2D-(+45°)), and multiaxial (B-4D-(0°), B-4D-(+45°) and B-4D-(-45°)) concrete composites were considerably greater compared to those of pristine concrete. Fractured four directional basalt concretes had regional breakages of the brittle cementitious matrix and broom-like damage features on the filaments, fiber-matrix debonding, intrafilament bundle splitting, and minor filament entanglement. Multiaxis 3D basalt concrete, particularly in the B-4D structure, controlled the crack phenomena and it was recognized as a more damage-tolerant material than the neat concrete.

15.
Materials (Basel) ; 14(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923210

ABSTRACT

In recent years, many seismic retrofitting methods have been performed to improve the structural performance and prevent the brittle failure of structural members. In the case of steel structures, slender seismic braces have been widely used for buildings, towers, and bridges. The brace connections should resist the full plastic axial tension load to ensure adequate plastic deformation performance for vibration energy absorption. However, certain connections do not satisfy these requirements. Recently, carbon fiber reinforced plastic (CFRP) has been used extensively to strengthen existing structures because of its high-strength, high elastic modulus, and light-weight characteristics. In this paper, we investigate the applicability of CFRP strengthening for brace connections and gusset plates with stepped surfaces using the vacuum-assisted resin transfer molding technique as a pilot demonstration. Stepped surfaces can be eliminated by using alternative CFRP layers to straighten the structural CFRP layers in order to effectively transfer the axial stress. Eventually, it is shown that CFRP strengthening can improve the connection strength and plastic deformation with 3% elongation, even if the CFRP is molded on the stepped surface.

16.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212802

ABSTRACT

Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.

17.
Polymers (Basel) ; 12(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660048

ABSTRACT

A systematic experimental study was performed to detect the compaction and permeability properties of multilayered biaxial and quadriaxial preforms under vacuum pressure. Compression response on ply level showed that the degree of nesting between quadriaxial NCF was more pronounced and the nesting deformation mechanism was affected by the interaction with stitch yarns. Owing to the meso-channels in the fibrous structure and the nesting between layers, the in-plane permeability of quadriaxial NCF did not follow an inverse proportion relationship with the fiber volume fraction. To predict the in-plane permeability of multilayered quadriaxial NCFs, unit cell models at a high level of geometrical details were built, including local variations in yarn cross-sections and the nesting deformation between layers. Numerical methods were implemented, and the prediction results were in very good agreement with the experimental data. Besides, the major contributing parameters to the enhancement of the in-plane permeabilities were identified by investigating the correlation between permeability and structural parameters of quadriaxial NCF. The modeling methodology and the principles established can be applied to the design of the quadriaxial NCF fabrics, where the permeability enhancement was evidenced.

18.
Materials (Basel) ; 13(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414153

ABSTRACT

Parametric investigations related to shoulder angle on tool geometry for a combined cold extrusion of a drive shaft, which consisted of spur gear and internal spline structures, were conducted through three-dimensional FE (finite element) simulations. The drive shaft was required to be about 92.00 mm for the face width of the top land on the spur gear part and roughly 22.70 mm for the groove depth of the internal spline section. AISI 1035 carbon steel material with a diameter of 50.00 mm and a length of 121.00 mm was spheroidized and annealed, then used as the initial billet material. A preform as an intermediate workpiece was adopted to avoid the excessive accumulation of plastic deformation during the combined cold extrusion. Accordingly, the cold forging process involves two extrusion operations such as a forward extrusion and a combined extrusion for the preform and the drive shaft. As the main geometric parameters influencing the dimensional quality and the deformed configuration of the final product, the two shoulder angles of θ1 and θ2 for the preform forging and the combined extrusion were both considered to be appropriate at 30°, 45°, and 60°, respectively. Using nine geometric parameter combinations, three-dimensional finite element simulations were performed, and these were used to evaluate the deformed features and the geometric compatibilities on the spur gear structure and the internal spline feature. Based on these comparative evaluations using the numerically simulated results, it is shown that the dimensional requirements of the target shape can be satisfied with the shoulder angle combination of (45°, 45°) for (θ1, θ2).

19.
Polymers (Basel) ; 11(12)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31817004

ABSTRACT

In this paper, recent shell model is advanced towards the calibration and validation of the Vacuum-assisted Resin Transfer Molding (VARTM) process in a novel way. The model solves the nonlinear and strongly coupled resin flow and preform deformation when the 3-D flow and stress problem is simplified to a corresponding 2-D problem. In this way, the computational efficiency is enhanced dramatically, which allows for simulations of the VARTM process of large scale thin-walled structures. The main novelty is that the assumptions of the neglected through-thickness flow and the restricted preform deformation along the normal of preform surface suffice well for the thin-walled VARTM process. The model shows excellent agreement with the VARTM process experiment. With good accuracy and high computational efficiency, the shell model provides an insight into the simulation-based optimization of the VARTM process. It can be applied to either determine locations of the gate and vents or optimize process parameters to reduce the deformation.

20.
Materials (Basel) ; 12(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683738

ABSTRACT

The accurate prediction of the permeability is the key to optimizing the molding process of fiber reinforced composites, thus to improve the composite quality, and reduce the material and labor costs in the manufacturing process. In this paper, the permeability of 2.5D woven preform with shear deformation was studied by experiments and numerical simulations. The permeabilities of the samples under various shear angles were measured by the radial flow method. An RVE (representative volume element) model based on the fabric microstructure and shear deformation is developed to predict the permeability of preform and the simulation results are compared with experiments value to verify the effectiveness of this model. Using this model, the effect of the fiber volume fraction on the permeability of the 2.5D woven preform was determined. Based on the structural characteristics, experimental and simulation results of the 2.5D woven preform, an empirical equation for predicting its permeability under shear deformation was formulated. The prediction accuracy of the equation was evaluated, and the equation was used to determine the change of permeability with shear deformation for the 2.5D woven preform.

SELECTION OF CITATIONS
SEARCH DETAIL