Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931975

ABSTRACT

In view of exploring the possibility of upcycling aerospace scrap, cure characteristics of out-of-spec carbon fiber prepregs are investigated in this study. The cure behavior of the prepreg is examined in the form of the mechanical cure conversion state of the material using a Dynamic Mechanical Analyzer (DMA). Cure kinetics is modeled by comparing the storage modulus at the start of the reaction (E'0) and instantaneously (E't) during isothermal experiments with those of the fully cured material (E'∞) obtained from dynamic scans. The glass transition temperature Tg and the extent of reaction before gelation are modeled using the DiBenedetto model, where the Tg of each laminate is determined in a DMA, per standard ASTM D7028. The mechanical properties, the extent of cure, and the glass transition temperature of the cured laminates were determined according to industry and international standards. The maximum conversion at temperatures between 100 °C and 140 °C is approximately 80% (±5%). The modeled rate of conversion shows a reasonable match with the experimental data, exhibiting a maximum reaction rate at about 30-40% of the cure conversion. The predicted evolution of the Tg as a function of cure conversion using the DiBenedetto model provides a 94% match with the experimental data. The multi-stage cure cycle based on the models offers shorter cycle times and high-quality laminates. The mechanical test results indicate approximately a 13% and 15% decrease in tensile strength and modulus, respectively, compared to pristine ones. The experimental extent of cure of the cured laminates (95.4%) is in close agreement with that predicted by the model (97%). The porosity in the laminates is estimated to be approximately 2.4%, which is acceptable in several industries.

2.
Polymers (Basel) ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36850277

ABSTRACT

This paper presents a study conducted on prepregs manufactured by a novel method for the impregnation of a thermoplastic matrix. Different composite prepregs based on polypropylene and reinforced with natural fibers (e.g., basalt and jute fibers) were developed. The mechanical and dynamic mechanical properties were investigated. DMA tests were conducted at 1 Hz frequency and properties such as storage modulus and damping (tan δ) were evaluated. The overall mechanical properties of the basalt fiber composites were found to be superior to that of the jute fiber-based samples. Thermo-gravimetric analysis (TG/DTG) of the composite samples showed that the thermal degradation temperatures of the basalt-based composites shifted to higher temperature regions compared to the PP or jute fiber composites. The addition of basalt fiber considerably improved the thermal stability of the composite samples. Microscopic images of the tensile fractured composite samples illustrated better fiber-matrix interfacial interaction due to the novel technology of prepregs. Single-ply and 2-ply prepregs showed significantly superior mechanical, thermal, and thermo-dynamical performance compared to the control sample (pure PP). 2-Ply composites demonstrated higher modulus, tensile strength, and storage modulus due to the higher fiber volume fraction. Basalt-based samples showed a minimum weight loss of about 57% up to 700 °C in contrast to 96.05% weight loss in the jute-based samples and 98.4% in the case of pure PP. The heat resistance index (THRI) is more than twice for basalt compared to jute and PP. Furthermore, the superior thermal stability of basalt is reflected in its DSC curves, showing the highest endothermic peak. The technique of using the resin in the form of thermoplastic yarns offers cost effective and efficient alternatives for composite manufacturing.

3.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683918

ABSTRACT

The choice of a manufacturing process, raw materials, and process parameters affects the quality of produced pre-consolidated tapes used in thermoplastic pultrusion. In this study, we used two types of pre-consolidated GF/PP tapes-commercially available (ApATeCh-Tape Company, Moscow, Russia) and inhouse-made tapes produced from commingled yarns (Jushi Holdings Inc., Boca Raton, FL, USA)-to produce pultruded thermoplastic Ø 6 mm bars and 75 mm × 3.5 mm flat laminates. Flat laminates produced from inhouse-made pre-consolidated tapes demonstrated higher flexural, tensile, and apparent interlaminar shear strength compared to laminates produced from commercial pre-consolidated tapes by as much as 106%, 6.4%, and 27.6%, respectively. Differences in pre-consolidated tape manufacturing methods determine the differences in glass fiber impregnation and, thus, differences in the mechanical properties of corresponding pultruded composites. The use of commingled yarns (consisting of matrix and glass fibers properly intermingled over the whole length of prepreg material) makes it possible to achieve a more uniform impregnation of inhouse-made pre-consolidated tapes and to prevent formation of un-impregnated regions and matrix cracks within the center portion of the fiber bundles, which were observed in the case of commercial pre-consolidated tapes. The proposed method of producing pre-consolidated tapes made it possible to obtain pultruded composite laminates with larger cross sections than their counterparts described in the literature, featuring better mechanical properties compared to those produced from commercial pre-consolidated tapes.

4.
Polymers (Basel) ; 13(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34641022

ABSTRACT

Sandwich composites are widely used in the manufacture of aircraft cabin interior panels for commercial aircraft, mainly due to the light weight of the composites and their high strength-to-weight ratio. Panels are used for floors, ceilings, kitchen walls, cabinets, seats, and cabin dividers. The honeycomb core of the panels is a very light structure that provides high rigidity, which is considerably increased with fiberglass face sheets. The panels are manufactured using the compression molding process, where the honeycomb core is crushed up to the desired thickness. The crushed core breaks fiberglass face sheets and causes other damage, so the panel must be reworked. Some damage is associated with excessive build-up of resin in localized areas, incomplete curing of the pre-impregnated fiberglass during the manufacturing process, and excessive temperature or residence time during the compression molding. This work evaluates the feasibility of using rigid polyurethane foams as a substitute for the honeycomb core. The thermal and viscoelastic behavior of the cured prepreg fiberglass under different manufacturing conditions is studied. The first part of this work presents the influence of the manufacturing parameters and the feasibility of using rigid foams in manufacturing flat panels oriented to non-structural applications. The conclusion of the article describes the focus of future research.

5.
Polymers (Basel) ; 13(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199785

ABSTRACT

We designed and tested a manufacturing process that resulted in the formation of composites with maximized electrical conductivity and optimized electromagnetic interference (EMI) shielding effectiveness (SE) properties. Single-walled carbon nanotube (SWCNT) paper, which is a microscopic aggregate of van der Waals force interaction, was impregnated with semi-cured epoxy to make SWCNT prepregs. These prepregs were completely cured into SWCNT/epoxy composites. Fabricating and curing processes were executed under proper temperature cycle depending on the time. We inspected SWCNT paper and the interfacial state between the SWCNTs and epoxy in the composite with a field emission-scanning electron microscopy and calculated the SWCNT weight fraction through thermogravimetric analysis measurements. Using these observations, electrical conductivity and EMI SE were investigated according to thickness which could be controlled by the suggested manufacturing process as 1-, 5- and 10-layer composites. Finally, we determined ideal composite thickness and the associated number of prepreg layers using skin depth theory.

6.
Polymers (Basel) ; 13(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801511

ABSTRACT

The effect of plasma treatment of the multi-walled carbon nanotube (MWCNT) surface on the fracture toughness of an aerospace grade epoxy resin and its unidirectional (UD) carbon fiber prepreg laminates has attracted scientific interest. A prepreg route eliminates the possible risk of carbon nanotube filtration by unidirectional carbon fibers. X-ray photoelectron spectroscopy results suggested that oxygen atom concentration at the nanotube surface was increased from 0.9% to 3.7% after plasma modification of the carbon nanotubes. A low number (up to 0.5 wt.%) of MWCNTs was added to epoxy resin and their carbon fiber prepreg laminates. Transmission electron micrographs revealed that the plasma treatment resulted in a better dispersion and distribution of MWCNTs in the epoxy resin. Plasma-treated MWCNTs resulted in a more pronounced resistance to the crack propagation of epoxy resin. During the production of the reference and nanotube-modified prepregs, a comparable prepreg quality was achieved. Neat nanotubes agglomerated strongly in the resin-rich regions of laminates lowering the interlaminar fracture toughness under mode I and mode II loading. However, plasma-treated nanotubes were found mostly as single particles in the resin-rich regions of laminates promoting higher energy dissipation during crack propagation via a CNT pull-out mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL