Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Bioeng ; 118(7): 2559-2571, 2021 07.
Article in English | MEDLINE | ID: mdl-33788275

ABSTRACT

Keratinase is an attractive industrial enzyme that can specifically catalyze keratin waste to obtain value-added products. A challenge to the application of keratinase is improving catalytic capacity to achieve efficient hydrolysis. In this study, we effectively expressed the keratinase gene from Bacillus licheniformis BBE11-1 in Bacillus subtilis WB600 based on pro-peptide engineering. Partial deletion of the pro-peptide sequence and the substitution of amino acid at the pro-peptide cleavage site (P1) suggested that the "chaperone effect" and "cleavage efficiency" of the pro-peptide determine the activity of the mature enzyme. Subsequently, seven target sites that can increase the activity of the mature enzyme by 16%-66% were obtained through the multiple sequence alignment of pro-peptides and site-directed mutation. We further performed combinatorial mutations at six sites based on the design principle of three-codon saturation mutations and obtained mutant 2-D12 (236.8 KU/mg) with a mature enzyme activity of 186% of the original (127.6 KU/mg). Finally, continuous fermentation was carried out in a 5-L bioreactor for 22 h, and the activity of the 2-D12 mature enzyme was increased to 391.6 KU/mg. Most importantly, 2-D12 could degrade more than 90% of feather waste into amino acids and peptides within 12 h with the aid of sulfite.


Subject(s)
Bacillus licheniformis/enzymology , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Feathers/chemistry , Keratins/chemistry , Peptide Hydrolases/chemistry , Amino Acid Substitution , Animals , Bacillus licheniformis/genetics , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Catalysis , Mutation, Missense , Peptide Hydrolases/genetics
2.
ACS Synth Biol ; 8(2): 425-433, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30668109

ABSTRACT

Keratinases are becoming biotechnologically important since they have shown potential in hydrolysis of recalcitrant keratins with highly rigid and strongly cross-linked structures. However, the large-scale application of keratinases has been limited by the inefficient expression level and low enzyme activity. In this work, we employed pro-peptide engineering and saturation mutagenesis to construct excellent keratinase variants with improved activities. It turned out that amino acid substitutions at the pro-peptide cleavage site (P1) could accelerate the release of active mature enzymes, resulting in a 3-fold activity increase. Eighteen sites of the pro-peptide area were targeted for codon mutagenesis, and a multisite saturation mutagenesis library of the six potential sites was generated, achieving a significant improvement of keratinase activity from 179 to 1114 units/mL. Also, the mutants exhibited alterant catalytic properties. Finally, fermentation for keratinase production in a 15 L fermenter was carried out, and the enzyme activity reached up to over 3000 units/mL. Our results demonstrated that pro-peptide engineering played a crucial role in high expression and engineering of proteases. This study provides a universal route toward improvement of industrial enzymes that were first synthesized as precursors in the form of pre-pro-protein.


Subject(s)
Biotechnology/methods , Peptide Hydrolases/metabolism , Amino Acid Substitution , Bacillus/enzymology , Catalysis , Hydrogen-Ion Concentration , Mutagenesis , Peptide Hydrolases/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL