Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473463

ABSTRACT

In this work, a new use of mixed Ti-6Al-4V powder, consisting of the retained powder after screening for additive manufacturing and the recycled powder after multiple printing, has been exploited. The powder mixture has been hot-isostatically-pressed (HIPed) at 930 °C/120 MPa for 3 h to reach full density. The hot deformation behavior of the as-HIPed powder compacts were investigated through isothermal compression tests, kinetic analyses, and hot processing maps. Finally, the optimized hot working parameters were validated using upsetting tests. The results show that the as-HIPed Ti-6Al-4V alloy has a fine and homogeneous microstructure. The activation energies were calculated to be 359 kJ/mol in the α + ß phase regime and 463 kJ/mol in the ß phase regime, respectively. The optimal hot working parameters are a deformation temperature above 950 °C and strain rate higher than 0.1 s-1. The hot workability of as-HIPed powder compacts is better than the as-cast billets. The deformed microstructure can be finer than that of as-HIPed state, and the mechanical performance can be further improved by the optimal thermo-mechanical processing treatment.

2.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068173

ABSTRACT

A systematic and comprehensive analysis of the hot deformation and mechanisms of SiC particle-reinforced aluminum matrix composites is significant for optimizing the processing of the composites and obtaining the desired components. Based on this, related research on 11 vol% SiCp particle-reinforced 7050Al matrix composites was carried out. Hot compression experiments were carried out on the Gleeble-3500 thermal simulator to study the hot deformation behavior of composites at the temperature of 370-520 °C and strain rate of 0.001-10 s-1. The hyperbolic sine constitutive equation of the material was established, and the processing map was calculated. Combining the typical metallograph and misorientation angle distribution, the microstructure evolution mechanism of composites was analyzed, and the effect of particles on recrystallization behavior was investigated. Under certain process conditions, the dominant deformation mechanism of composites changed from dynamic recovery (DRV) to dynamic recrystallization (DRX), and the grain boundary sliding mechanism began to play a role. In addition, high temperature tensile and elongation at break were tested, and it was found that the dominant form of fracture failure changed from brittle fracture of the particles to ductile fracture of the matrix as the temperature increased.

3.
Materials (Basel) ; 16(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37297227

ABSTRACT

One of the key issues limiting the application of Al-Mg-Zn-Cu alloys in the automotive industry is forming at a low cost. Isothermal uniaxial compression was accomplished in the range of 300-450 °C, 0.001-10 s-1 to study the hot deformation behavior of an as-cast Al-5.07Mg-3.01Zn-1.11Cu-0.01Ti alloy. Its rheological behavior presented characteristics of work-hardening followed by dynamic softening and its flow stress was accurately described by the proposed strain-compensated Arrhenius-type constitutive model. Three-dimensional processing maps were established. The instability was mainly concentrated in regions with high strain rates or low temperatures, with cracking being the main instability. A workable domain was determined as 385-450 °C, 0.001-0.26 s-1, in which dynamic recovery (DRV) and dynamic recrystallization (DRX) occurred. As the temperature rose, the dominant dynamic softening mechanism shifted from DRV to DRX. The DRX mechanisms transformed from continuous dynamic recrystallization (CDRX), discontinuous dynamic recrystallization (DDRX), and particle-stimulated nucleation (PSN) at 350 °C, 0.1 s-1 to CDRX and DDRX at 450 °C, 0.01 s-1, and eventually to DDRX at 450 °C, 0.001 s-1. The eutectic T-Mg32(AlZnCu)49 phase facilitated DRX nucleation and did not trigger instability in the workable domain. This work demonstrates that the workability of as-cast Al-Mg-Zn-Cu alloys with low Zn/Mg ratios is sufficient for hot forming.

4.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048953

ABSTRACT

The 2198 Al-Li alloy has unique superiority in mechanical performance and has been extensively used in the aerospace field. In this study, the hot deformation behavior of the 2198 Al-Li alloy was investigated on a Gleeble-1500 thermomechanical simulator with a strain rate of 0.01-10 s-1 in the temperature range of 330-510 °C. The Arrhenius constitutive equation of the alloy was established based on the true stress-strain curves to describe the rheology behaviors during the deformation of the alloy. The processing maps under the strain of 0.2-0.8 were constructed, which indicates the efficiency of power dissipation and instability of the deformed alloy. It was found that the instability domains are more likely to occur in the regions of low deformation temperature and high strain rate, corresponding to the high Zener-Hollomon (Z) parameter. The microstructure evolution of the studied alloy with different Z parameters was characterized. Then, the dynamic recrystallization (DRX) behavior was studied by electron backscatter diffraction, and the misorientation angle of deformed specimens was analyzed. The effect of different deformation temperatures and strain rates on the microstructure of the alloy and the behavior of dislocations and precipitations were investigated by transmission electron microscopy. The results demonstrate that continuous dynamic recrystallization (CDRX) and geomatic dynamic recrystallization (GDRX) mainly occur at the deformation conditions of a low Z value, and discontinuous dynamic recrystallization (DDRX) is likely to occur with increasing Z values.

5.
Materials (Basel) ; 16(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36769925

ABSTRACT

In this review paper, the hot compressive deformation mechanisms and processing maps of high-entropy alloys (HEAs) with different chemical compositions and crystal structures are analyzed. The stress exponent (n1) values measured from the series of compression tests for the HEAs performed at different temperatures and strain rates are distributed between 3 and 35, and they are most populated between 3 and 7. Power law breakdown (PLB) is found to typically occur at T/Tm ≤ 0.6 (where T is the testing temperature and Tm is the melting temperature). In AlxCrMnFeCoNi (x = 0-1) and AlxCrFeCoNi (x = 0-1) HEAs, n1 tends to decrease as the concentration of Al increases, suggesting that Al acts as a solute atom that exerts a drag force on dislocation slip motion at high temperatures. The values of activation energy for plastic flow (Qc) for the HEAs are most populated in the range between 300 and 400 kJ/mol. These values are close to the activation energy of the tracer diffusivity of elements in the HEAs ranging between 240 and 408 kJ/mol. The power dissipation efficiency η of the HEAs is shown to follow a single equation, which is uniquely related to n1. Flow instability for the HEAs is shown to occur near n1 = 7, implying that the onset of flow instability occurs at the transition from power law creep to PLB. Processing maps for the HEAs are demonstrated to be represented by plotting η as a function of the Zener-Hollomon parameter (Z = expQcRT, where R is the gas constant). Flow stability prevails at Z ≤ 1012 s-1, while flow instability does at Z ≥ 3 × 1014 s-1.

6.
Materials (Basel) ; 15(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36363405

ABSTRACT

Hot deformation behavior of 4130 steel and optimization of its processing parameters are presented in this paper. Compression tests were performed at temperatures ranging from 800 to 1200 °C and at the strain rates in the range from 0.01 to 100 s-1. A comprehensive analysis of the material behavior at different temperature and strain-rate ranges was performed taking into account various criteria of stability and instability of the material flow under various thermomechanical conditions. The flow-stress curves obtained during compression tests, as well as the processing maps elaborated on the basis of various flow-stability criteria, are discussed. Processing parameters developed according to the Prasad's and Murty's criteria are recommended for designing the technology of forging of the investigated steel. Such parameters ensure the homogeneity and stability of the material flow in a forged part, what was confirmed by successful forging of 4130 steel in industrial conditions. The processing map developed according to Gegel's approach, as compared to the processing maps obtained in accordance with the Prasad's and Murty's criteria, should be treated as general support for determining the thermomechanical processing parameters.

7.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295467

ABSTRACT

In this work, we designed ternary ZnSnO3 particle-reinforced Cu matrix composites and evaluated the hot deformation behavior of ZnSnO3/Cu composites. The hot deformation characteristics of typical dynamic recrystallization were probed by the resulting true stress-strain curves of ZnSnO3/Cu composites. The influences of deformation conditions, including temperatures (650-850 °C) and strain rates (0.01-5 s-1), on the flow stress of the designed composites were investigated. This revealed that the peak stress increased with the increasing of strain rate and decreasing of temperature. Additionally, the activation energy was calculated to be 237.05 kJ/mol and followed by yielding a constitutive equation for low-stress ZnSnO3/Cu composites. The processing maps established by dynamic materials model theory indicated that the designed composites possessed excellent hot workability, and then the processing parameters (790-850 °C and 0.01-0.04 s-1) of the ZnSnO3/Cu composites were determined for practical industrial production. Our work discloses the deformation behavior of ZnSnO3/Cu matrix composites and extends the rational process design for ternary ceramic/metal materials with excellent hot workability.

8.
Materials (Basel) ; 15(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35888268

ABSTRACT

Microstructure is an important factor that affects the mechanical properties and service life of forgings. Through the full study of the formability of the material, the internal microstructure of the material can be effectively controlled. In order to accurately describe the formability of materials during thermal processing, 3D hot processing maps containing strains were established in this paper, and the 3D hot processing maps were coupled with the finite element method for simulation calculation. The Cr5 alloy steel was subjected to unidirectional thermal compression at a strain rate of 0.005-5 s-1 and temperature range of 900-1200 °C on a Gleeble-1500D thermal simulation machine, in order to obtain the date of true stress and strain. Based on the dynamic material model (DMM), the 3D processing maps of Cr5 alloy steel was established, and the 3D processing maps were associated with the analysis of microstructure evolution during hot deformation. The results show that the optimum thermal deformation conditions are as follows: temperature of 1000-1125 °C, strain rate of 0.01-0.2 s-1, and peak power dissipation of 0.41. The 3D processing maps were coupled with the finite element software FORGE® to simulate the hot working process, and the distribution and change of power dissipation and flow instability domain on the metal deformation under different thermal deformation conditions were obtained. The comparison between the simulation results and metallographic images of typical regions of metal deformation shows that they are in good agreement. This method can effectively predict and analyze the formability of materials during hot processing and provide guidance for practical industrial production.

9.
Materials (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614709

ABSTRACT

The Gleeble-3800 thermal simulator was used for hot compression simulation to understand the hot deformation performance of TA1 prepared by the single-pass electron beam cold hearth (EB) process. The deformation degree is 50% on a thermal simulator when the temperature range is 700-900 °C, with a strain rate of 0.01-10-1 s. According to the thermal deformation data, the true stress-strain curve of TA1 was studied. Meanwhile, the constitutive model and processing map were established through the experimental data. These results indicate that the deformation temperature negatively affects strain rate and flow stress. The heat deformation activation energy of EB produced TA1 sample was lower than that of VAR produced TA1 sample in the studied range. The best processing areas of EB-produced TA1 were strain rates of 0.05-0.01 s-1, within 700-770 °C; or strain rates of 0.01-0.15 s-1; 840-900 °C. The results of this paper enrich the fundamental knowledge of the thermal deformation behavior of TA1 prepared by EB furnaces.

10.
Materials (Basel) ; 14(9)2021 May 09.
Article in English | MEDLINE | ID: mdl-34065157

ABSTRACT

The hot deformation behaviors of a new Ti-6Al-2Nb-2Zr-0.4B titanium alloy in the strain rate range 0.01-10.0 s-1 and temperature range 850-1060 °C were evaluated using hot compressing testing on a Gleeble-3800 simulator at 60% of deformation degree. The flow stress characteristics of the alloy were analyzed according to the true stress-strain curve. The constitutive equation was established to describe the change of deformation temperature and flow stress with strain rate. The thermal deformation activation energy Q was equal to 551.7 kJ/mol. The constitutive equation was ε Ë™=e54.41[sinh (0.01σ)]2.35exp(-551.7/RT). On the basis of the dynamic material model and the instability criterion, the processing maps were established at the strain of 0.5. The experimental results revealed that in the (α + ß) region deformation, the power dissipation rate reached 53% in the range of 0.01-0.05 s-1 and temperature range of 920-980 °C, and the deformation mechanism was dynamic recovery. In the ß region deformation, the power dissipation rate reached 48% in the range of 0.01-0.1 s-1 and temperature range of 1010-1040 °C, and the deformation mechanism involved dynamic recovery and dynamic recrystallization.

11.
Materials (Basel) ; 14(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920581

ABSTRACT

The flow behavior of metastable ß titanium alloy was investigated basing on isothermal hot compression tests performed on Gleeble 3800 thermomechanical simulator at near and above ß transus temperatures. The flow stress curves were obtained for deformation temperature range of 800-1100 °C and strain rate range of 0.01-100 s-1. The strain compensated constitutive model was developed using the Arrhenius-type equation. The high correlation coefficient (R) as well as low average absolute relative error (AARE) between the experimental and the calculated data confirmed a high accuracy of the developed model. The dynamic material modeling in combination with the Prasad stability criterion made it possible to generate processing maps for the investigated processing temperature, strain and strain rate ranges. The high material flow stability under investigated deformation conditions was revealed. The microstructural analysis provided additional information regarding the flow behavior and predominant deformation mechanism. It was found that dynamic recovery (DRV) was the main mechanism operating during the deformation of the investigated ß titanium alloy.

12.
Materials (Basel) ; 13(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824430

ABSTRACT

The stress-strain curves for nickel-based superalloy were obtained from isothermal hot compression tests at a wide range of deformation temperatures and strain rates. The material constants and deformation activation energy of the investigated superalloy were calculated. The accuracy of the constitutive equation describing the hot deformation behavior of this material was confirmed by the correlation coefficient for the linear regression. The distribution of deformation activation energy Q as a function of strain rate and temperature for nickel-based superalloy was presented. The processing maps were generated upon the basis of Prasad stability criterion for true strains ranging from 0.2 to 1 at the deformation temperatures range of 900-1150 °C, and strain rates range of 0.01-100 s-1. Based on the flow stress curves analysis, deformation activation energy map, and processing maps for different true strains, the undesirable and potentially favorable hot deformation parameters were determined. The microstructural observations confirmed the above optimization results for the hot workability of the investigated superalloy. Besides, the numerical simulation and industrial forging tests were performed in order to verify the obtained results.

13.
Materials (Basel) ; 13(16)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784571

ABSTRACT

In the presented research, conventional hot processing maps superimposed over the flow stress maps or activation energy maps are utilized to study a correlation among the efficiency of power dissipation, flow stress, and activation energy evolution in the case of Cr-Mo low-alloyed steel. All maps have been assembled on the basis of two flow curve datasets. The experimental one is the result of series of uniaxial hot compression tests. The predicted one has been calculated on the basis of the subsequent approximation procedure via a well-adapted artificial neural network. It was found that both flow stress and activation energy evolution are capable of expressing changes in the studied steel caused by the hot compression deformation. A direct association with the course of power dissipation efficiency is then evident in the case of both. The connection of the presence of instability districts to the activation energy evolution, flow stress course, and power dissipation efficiency was discussed further. Based on the obtained findings it can be stated that the activation energy processing maps represent another tool for the finding of appropriate forming conditions and can be utilized as a support feature for the conventionally-used processing maps to extend their informative ability.

14.
Materials (Basel) ; 13(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664636

ABSTRACT

A Gleeble-2000D thermal simulation machine was used to investigate the high-temperature hot compression deformation of an extruded Mg-16Al magnesium alloy under various strain rates (0.0001-0.1 s-1) and temperatures (523-673 K). Combined with the strain compensation Arrhenius equation and the Zener-Hollomon (Z) parameter, the constitutive equation of the alloy was constructed. The average deformation activation energy, Q, was 144 KJ/mol, and the strain hardening index (n ≈ 3) under different strain variables indicated that the thermal deformation mechanism was controlled by dislocation slip. The Mg-16Al alloy predicted by the Sellars model was characterized by a small dynamic recrystallization (DRX) critical strain, indicating that Mg17Al12 particles precipitated during the compression deformation promoted the nucleation of DRX. Hot processing maps of the alloy were established based on the dynamic material model. These maps indicated that the high Al content, precipitation of numerous Mg17Al12 phases, and generation of microcracks at low temperature and low strain rate led to an unstable flow of the alloy. The range of suitable hot working parameters of the experimental alloy was relatively small, i.e., the temperature range was 633-673 K, and the strain rate range was 0.001-0.1 s-1.

15.
Materials (Basel) ; 13(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218291

ABSTRACT

Hot deformation behavior of a high-titanium Nb-micro-alloyed steel was investigated by conducting hot compression tests at the temperature of 900-1100 °C and the strain rate of 0.005-10 s-1. Using a sinh type constitutive equation, the apparent activation energy of the examined steel was 373.16 kJ/mol and the stress exponent was 6.059. The relations between Zener-Hollomon parameters versus peak stress (strain) or steady-state stress (strain) were successfully established via the Avrami equation. The dynamic recrystallization kinetics model of the examined steel was constructed and the validity was confirmed based on the experimental results. The 3-D atomic distribution maps illustrated that strain can significantly affect the values of power dissipation efficiency and the area of instability domains. The 3-D processing maps based on a dynamic material model at the strains of 0.2, 0.4, 0.6 and 0.8 were established. Based on traditional and 3-D processing maps and microstructural evaluation, the optimum parameter of for a high-titanium Nb-micro-alloyed steel was determined to be 1000-1050 °C/0.1-1 s-1.

16.
Materials (Basel) ; 13(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936658

ABSTRACT

In this work, the Mg-3Sn-2Al-1Zn (TAZ321, wt. %) alloy with excellent high temperature resistance was compressed using a Gleeble-3500 thermo-mechanical simulator at a wide temperature and the strain rate range. The kinetics analyses showed that the dominant deformation mechanism was likely caused by the cross slipping of dislocations. A constitutive equation which expressed the relationship between the flow stress, deformation temperature, and strain rate was established, and the average activation energy Q was calculated to be 172.1 kJ/mol. In order to delineate the stability and instability working domains, as well as obtain the optimum hot working parameters of the alloy, the hot processing maps in accordance with Prassad's criterion are constructed at the true strain of 0.2, 0.4, 0.6, and 0.8, respectively. Based on the hot processing map and microstructure observation, the optimum hot working parameter was determined to be 350 °C/1 s-1. The continuous fine dynamic recrystallization (CDRX) grains occurred in the optimum deformation zone. The predicted instability domains was identified as T = 200-300 °C,ε ε = 10-2-1 s-1, which corresponded to the microstructure of deformation twinning and micro cracks at the intersection of grain boundaries.

17.
Data Brief ; 28: 104923, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31890787

ABSTRACT

This article presents the datasets gathered for the hot processing of three Ni-based superalloys intended for A-USC application, Haynes 214, Haynes 230 and Inconel 740H. Isothermal compression tests were conducted with a Gleeble 3500 at temperatures between 1000 °C and 1200 °C and strain rates between 0.01/s and 1/s to a full true strain of 0.7. The obtained true stress-true strain curves were used as basis for hot processing maps, linking temperature, stress and strain rate. Subsequently, all samples were sectioned through the geometric centre to provide microstructural information, captured using EBSD, as well as EDX for the evolution of secondary phases. Thermodynamic modelling was performed to validate compositions and mass fraction data from EDX measurements. These combined datasets help in understanding the deformation behaviour of a selected range of superalloys, under commercial processing conditions, aiding in process design optimizations and improvements. For complete interpretation of the data the reader should refer to the related publication "Comparative study of the hot processing behavior in advanced Ni-based superalloys for use in A-USC applications".

18.
Materials (Basel) ; 12(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756980

ABSTRACT

The hot compressive behavior and processing maps of as-cast and extruded 7075 aluminum alloys with a similar grain size (320-350 m) were studied and compared, which allows us to directly observe the effect of segregated phases in the as-cast microstructure on the deformation behavior and hot workability of 7075 alloys. In the as-cast alloy, the compound phases segregated along the interdendritic interfaces within the interiors of original grains provided the additional sites for continuous dynamic recrystallization via the particle stimulation nucleation mechanism. As a result, the as-cast alloy exhibited higher fractions of recrystallized grains and smaller grain sizes than the extruded alloy after compression. The stress exponent values of the as-cast alloy were smaller than those of the extruded alloy. In the processing maps, the domain associated with high power dissipation efficiencies (≥35%) occurred in a wider temperature range in the as-cast alloy compared to the extruded alloy. The segregated phases that remained undissolved in the as-cast alloy after compressive deformation could be effectively eliminated during the solid solution treatment (753 K for 2 h) for T6 aging applied after hot compression. The current results suggest the possibility and advantage of omitting the extrusion step when preparing 7xxx aluminum forging or extrusion feedstocks for hot working. The proposed method can be applied to other precipitation hardenable aluminum alloys.

19.
Materials (Basel) ; 11(10)2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30314328

ABSTRACT

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s-1 to 10 s-1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.

SELECTION OF CITATIONS
SEARCH DETAIL