Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Foods ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338619

ABSTRACT

Kombucha is a fermented beverage traditionally made from the leaves of Camelia sinensis. The market has drastically expanded recently, and the beverage has become more elaborated with new, healthy food materials and flavors. Pruning and harvesting during coffee production may generate tons of coffee leaves that are discarded although they contain substantial amounts of bioactive compounds, including those found in maté tea and coffee seeds. This study characterized the changes in volatilome, microbial, and sensory profiles of pure and blended arabica coffee leaf tea kombuchas between 3-9 days of fermentation. Acceptance was also evaluated by consumers from Rio de Janeiro (n = 103). Kombuchas (K) were prepared using black tea kombucha starter (BTKS) (10%), sucrose (10%), a symbiotic culture of Bacteria and Yeasts (SCOBY) (2.5%), and a pure coffee leaf infusion (CL) or a 50:50 blend with toasted maté infusion (CL-TM) at 2.5%. The RATA test was chosen for sensory profile characterization. One hundred volatile organic compounds were identified when all infusions and kombucha samples were considered. The potential impact compounds identified in CL K and CL-TM K were: methyl salicylate, benzaldehyde, hexanal, nonanal, pentadecanal, phenylethyl-alcohol, cedrol, 3,5-octadien-2-one, ß-damascenone, α-ionone, ß-ionone, acetic acid, caproic acid, octanoic acid, nonanoic acid, decanoic acid, isovaleric acid, linalool, (S)-dihydroactinidiolide, isoamyl alcohol, ethyl hexanoate, and geranyl acetone. Aroma and flavor descriptors with higher intensities in CL K included fruity, peach, sweet, and herbal, while CL-TM K included additional toasted mate notes. The highest mean acceptance score was given to CL-TM K and CL K on day 3 (6.6 and 6.4, respectively, on a nine-point scale). Arabica coffee leaf can be a co-product with similar fingerprinting to maté and black tea, which can be explored for the elaboration of potentially healthy fermented beverages in food industries.

2.
Waste Manag ; 166: 211-221, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37186991

ABSTRACT

This study evaluated the effects of addition of oil and gas exploration and production wastes (E&PW) on hydraulic behavior of municipal solid waste (MSW). A series of laboratory experiments were conducted to assess the impacts of vertical stress, waste composition, mixture ratio of MSW to E&PW based on total mass (e.g., 20% MSW + 80% E&PW), and mixing methods on hydraulic conductivity. Hydraulic conductivity (k) for MSW-E&PW mixtures with 20% and 40% E&PW contents reduced from 3 × 10-5 m/s to 10-7 m/s as vertical stress increased from 0 to 400 kPa. An increase in the mixture ratio above 60% resulted in an additional order-of-magnitude decrease in k to 10-8 m/s as vertical stress increased above 200 kPa. The addition of E&PW did not impact the available flow path, even though adding E&PW to MSW reduced the void spaces. This indicated that the waste matrix is capable of accepting E&PW while keeping the flow structure within the waste matrix. However, for vertical stress greater than 50 kPa, mixtures of MSW + 80% E&PW were observed to yield hydraulic conductivity < 10-9 m/s.


Subject(s)
Refuse Disposal , Solid Waste , Solid Waste/analysis , Refuse Disposal/methods , Electric Conductivity , Waste Disposal Facilities
3.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903099

ABSTRACT

Textile waste is formed in various stages, from the preparation of raw materials to the utilisation of textile products. One of the sources of textile waste is the production of woollen yarns. During the production of woollen yarns, waste is generated during the mixing, carding, roving, and spinning processes. This waste is disposed of in landfills or cogeneration plants. However, there are many examples of textile waste being recycled and new products being produced. This work deals with acoustic boards made from waste from the production of woollen yarns. This waste was generated in various yarn production processes up to the spinning stage. Due to the parameters, this waste was not suitable for further use in the production of yarns. During the work, the composition of waste from the production of woollen yarns was examined-namely, the amount of fibrous and nonfibrous materials, the composition of impurities, and the parameters of the fibres themselves. It was determined that about 74% of the waste is suitable for the production of acoustic boards. Four series of boards with different densities and different thicknesses were made with waste from the production of woollen yarns. The boards were made in a nonwoven line using carding technology to obtain semi-finished products from the individual layers of combed fibres and thermal treatment of the prepared semi-finished product. The sound absorption coefficients in the sound frequency range between 125 and 2000 Hz were determined for the manufactured boards, and the sound reduction coefficients were calculated. It was found that the acoustic characteristics of soft boards made from woollen yarn waste are very similar to those of classic boards or sound insulation products made from renewable resources. At a board density of 40 kg/m3, the value of the sound absorption coefficient varied from 0.4 to 0.9, and the noise reduction coefficient reached 0.65.

4.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676608

ABSTRACT

In the production of building materials, there has been an increased interest in the use of by-products and industrial waste in recent years. Such modifications make it possible to solve not only technical and economic problems, but also environmental problems. This article describes the use of basalt powder waste in sand-lime products (silicates). The aim of the study was to manage basalt powder waste and to investigate the changes it causes in sand-lime products. The article describes the planning of the experiment, which directly determines the number of samples and their composition, which was necessary to conducting a full analysis and correctly illustrating the relationships occurring in the samples. Basic tests were carried out: compressive strength, density and water absorption, as well as optical tests and scanning microscopy. Based on the research conducted, it was concluded that the use of basalt powder as a component of sand-lime products has positive effects. Studies show that the best results are achieved with a proportion of powder in the raw material mass of about 10%-the compressive strength reaches almost 30 MPa, which is almost twice that of traditional silicate.

5.
Cells ; 11(24)2022 12 10.
Article in English | MEDLINE | ID: mdl-36552757

ABSTRACT

Oil production waste products (OPWPs) derive from olive mill and represent a crucial environmental problem due to their high polyphenolic content able to pollute the ground. One option to reduce the OPWPs' environmental impact is to exploit polyphenols' biological properties. We sought to analyze the transcriptomic variations of colorectal cancer cells exposed to the OPWPs extracts and hydroxytyrosol, the major component, to recognize unknown and ill-defined characteristics. Among the top affected pathways identified by GSEA, we focused on oxidative phosphorylation in an in vitro system. Colorectal cancer HCT116 and LoVo cells treated with hydroxytyrosol or OPWPs extracts showed enhancement of the respiratory chain complexes' protein levels, ATP production and membrane potential, suggesting stimulation of mitochondrial functions. The major proteins involved in mitochondrial biogenesis and fusion events of mitochondrial dynamics were positively affected, as by Western blot, fostering increase of the mitochondrial mass organized in a network of elongated organelles. Mechanistically, we proved that PPARγ mediates the effects as they are mimicked by a specific ligand and impaired by a specific inhibitor. OPWP extracts and hydroxytyrosol, thus, promote mitochondrial functionality via a feed-forward regulatory loop involving the PPARγ/PGC-1α axis. These results support their use in functional foods and as adjuvants in cancer therapy.


Subject(s)
Colorectal Neoplasms , Waste Products , Humans , PPAR gamma/metabolism , Transcriptome , Plant Extracts/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
6.
Materials (Basel) ; 15(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013860

ABSTRACT

The accumulated waste generated from industries severely affects environmental conditions. Using waste as a construction material or soil stabilization is an emerging area in the construction industry. Introducing new additive materials to strengthen local soils using industrial waste is an inexpensive and more effective method to improve the soil. In light of this, this study aims to develop environmentally clean construction materials for stabilizing natural loam (NL) using red mud (RM), blast furnace slag (BFS), and lime production waste (LPW). Nine different mixtures were prepared with four different combinations of RM (20, 30, and 40%), BFS (25, 30 and 35%), LPW (4, 6 and 8%), and various content of NL. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic absorption spectroscopy (AAS), and axial compressive strength were examined. The results indicated that the optimum strength was obtained from the sample containing 40% of RM, 35% of BFS, and 8% of LPW. The observed compressive strength of the sample for 90 days was 7.38 MPa, water resistance was 7.12 MPa, and frost resistance was 7.35 MP, with low linear expansion meeting the demands for first class construction materials of the Kazakh norms. The mineral composition analysis evidenced the lack of heavy metals contaminants and hazardous compounds. Based on strength and environmental performance, RM, BFS, LPW, and NL mix can be used as a road base material. This process is believed to reduce environmental pollution related to RM and BFS, and lower the road base cost.

7.
Molecules ; 27(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566041

ABSTRACT

The food industry generates a great amount of food waste and by-products, which in many cases are not fully valorized. Press cakes, deriving from oilseeds extraction, represent interesting co-products due to their nutritional value, high biopolymers content, and the presence of bioactive phytochemicals. Gluten-free breads (GFBs) are products that have disadvantages such as unsatisfactory texture, low nutritional value, and short shelf life, so natural additives containing proteins and hydrocolloids are in demand to increase GFBs value. In this study, extract from flaxseed by-product (FOCE-Flaxseed Oil Cake Extract) was used to replace water (25-100%) in GFBs formulations and their nutritional value, antioxidant properties, and sensory features were investigated. The results showed that GFBs with FOCE had an elevated nutritional and nutraceutical profile (up to 60% more proteins, significantly increased K, Mg, and P levels). Moreover, the addition of FOCE improved the technological parameters (increased specific volume, number of cells and height/width ratio, reduced density, average size, and perimeter of cells), antioxidant potential, and overall sensory quality of GFBs. This study showed an encouraging way of using a by-product that, due to its high content of proteins, polysaccharides, minerals, and antioxidants, can add value to GFBs.


Subject(s)
Flax , Refuse Disposal , Antioxidants/pharmacology , Bread , Nutritive Value , Plant Extracts , Water
8.
Materials (Basel) ; 15(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35629561

ABSTRACT

The paper presents the material-characterization properties of apple pomace-the post-production waste of juice pressing. Tests were carried out on the basic physical properties of apple pomace: color, specific-density, and energy properties. Extensive material-composition analyses based on DSC (differential scanning calorimetry) and TGA (thermogravimetry) methods were also performed. It has been shown that pomace, due to its energy value, can be a good fuel. The obtained thermal data confirm the presence of cellulose, hemicelluloses, lignins and pectins in the analyzed pomace. The results confirm that dried apple pomace is microbiologically stable with good health-promoting properties.

9.
Antioxidants (Basel) ; 11(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35453308

ABSTRACT

Olive oil production is associated with the generation of oil production waste products (OPWPs) rich in water-soluble polyphenols that represent serious environmental problems. Yet OPWPs can offer new opportunities by exploiting their bioactive properties. In this study, we chemically characterized OPWPs polyphenolic extracts and investigated their biological activities in normal and colorectal cancer cells. Hydroxytyrosol (HTyr), the major constituent of these extracts, was used as the control. We show that both HTyr and the extracts affect cell viability by inducing apoptosis and cell cycle arrest. They downregulate inflammation by impairing NF-κB phosphorylation and expression of responsive cytokine genes, as TNF-α and IL-8, at both mRNA and protein levels, and prevent any further increase elicited by external challenges. Mechanistically, HTyr and the extracts activate PPARγ while hampering pro-inflammatory genes expression, acting as a specific agonist, likely through a trans-repression process. Altogether, OPWPs polyphenolic extracts show stronger effects than HTyr, conceivably due to additive or synergistic effects of all polyphenols contained. They display anti-inflammatory properties and these results may pave the way for improving OPWPs extraction and enrichment methods to reduce the environmental impact and support their use to ameliorate the inflammation associated with diseases and tumors.

10.
Materials (Basel) ; 15(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35329506

ABSTRACT

Waste generated in fine wool production is homogeneous and without contamination, which increases its chances of reuse. Waste mineral wool from demolition sites belongs to the specific group of waste. However, the storage and collection require implementing restrictive conditions, such as improper storage of mineral wool, which is highly hazardous for the environment. The study focuses on the leachability of selected pollutants (pH, Cl-, SO42-) and heavy metals (Ba, Co, Cr, Cu, Ni, Pb, Zn) from the waste mineral wool. As a solution to the problem of storing mineral wool waste, it was proposed to process it into wool-based geopolymer. The geopolymer, based on mineral wool, was also assessed regarding the leaching of selected impurities. Rock mineral wool is very good for geopolymerisation, but the glass wool needs to be completed with additional components rich in Al2O3. The research involved geopolymer prepared from mineral glass wool with bauxite and Al2O3. So far, glass wool with the mentioned additives has not been tested. An essential aspect of the article is checking the influence of wool-based geopolymer on the environment. To investigate the environmental effects of the wool-based monolith and crushed wool geopolymers were compared. Such research has not been conducted so far. For this purpose, water extracts from fragmented geopolymers were made, and tests were carried out following EN 12457-4. There is no information in the literature on the influence of geopolymer on the environment, which is an essential aspect of its possible use. The research results proved that the geopolymer made on the base of mineral wool meets the environmental requirements, except for the pH value. As mentioned in the article, the geopolymerisation process requires the dissolution of the starting material in a high pH (alkaline) solution. On the other hand, the pH minimum 11.2 value of fresh geopolymer binder is required to start geopolymerisation. Moreover, research results analysed in the literature showed that the optimum NaOH concentration is 8 M. for the highest compressive strength of geopolymer. Therefore, the geopolymer strength decreases with NaO concentration in the NaOH solution. Geopolymers glass wool-based mortars with Al2O3 obtained an average compressive strength of 59, the geopolymer with bauxite achieved about 51 MPa. Thus, Al2O3 is a better additional glass wool-based geopolymer than bauxite. The average compressive strength of rock wool-based geopolymer mortar was about 62 MPa. The average compressive strength of wool-based geopolymer binder was about 20-25 MPa. It was observed that samples of geopolymers grout without aggregate participation are characterised by cracking and deformation.

11.
J Radiol Prot ; 41(3)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34157700

ABSTRACT

This article gives an overview of Russian legislation and international recommendations on the safe management regulation of the accumulated very low level radioactive waste (RW), provides the comparison of Russian and international criteria for RW attribution to this or that class and also the existing radiation safety requirements. This article also deals with the difficulties in management of production waste containing radionuclides. Criteria and standards were selected from international (ICRP and IAEA publications) and Russian (Federal Law on Management of Radioactive Waste, Government Decree on Radioactive Waste Classification, The Basic Sanitary Rules of Radiation Safety) documents for comparative analysis. International and Russian criteria for the radioactive materials attribution to RW and production waste containing radionuclides were compared during the analysis. A number of radionuclides for which it is necessary to establish such criteria have been identified. It was found that Russian classification of radioactive materials is generally consistent with IAEA classification. Practices of managing production waste containing radionuclides (protection from contact with the environment, the placement in the long-term storage facilities or disposal) depend on the period of potential hazard of radionuclides. The management of production waste containing radionuclides requires a separate system which should be developed in accordance with the RW management system.


Subject(s)
Radioactive Waste , Waste Management , Radioactive Waste/analysis , Radioisotopes , Russia
12.
Water Environ Res ; 92(10): 1711-1716, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32762097

ABSTRACT

The storage of large amount of power production waste occupies huge land resource; moreover, the stored or discarded waste may pollute the water environment through changing the water pH, releasing the trace and toxic elements even radioactive elements, and so on by leachate. Therefore, the recycling and disposal of power production waste are important and necessary. This paper reviews the research literatures published in 2019 on power generation waste from coal-fired and nuclear power plants, mainly including the recycling of fly ash and flue gas desulfurization gypsum in construction industry and environmental application, the recovery and immobilization of different metals from coal combustion products and selective catalytic reduction catalysts, and the treatment and disposal of radioactive elements from nuclear power plants. Practioner points Coal-fired power plant waste can be applied for material preparation and wastewater purification. Valued and toxic metals are normally recovered or removed from spent selective catalytic reduction catalyst. Recovery and removal of radioactive elements is essential for nuclear power plant wastes disposal.


Subject(s)
Coal , Power Plants , Coal/analysis , Coal Ash , Metals
13.
Data Brief ; 23: 103829, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372465

ABSTRACT

This data article ranks 294 countries worldwide with more potential available, of cereal based agricultural residues for bioenergy production. Nine different cereal-based agricultural waste products (barley, wheat, millet, oat, rice, and rye straw, sorghum straw/stalk, and maize cob) are used. The tables and figures are grouped by the most prevalent Köppen-Geiger climate classification (tropical/megathermal, dry (desert and semi-arid), temperate/mesothermal, continental/microthermal), continent and region. The data was collected by the authors from FAO bioenergy and food security rapid appraisal tool (excel-based tools) that uses crop yields and production with 10 years (2005-2014) average annual production to estimate the residue yield (t/ha), by feedstock.

14.
Environ Sci Pollut Res Int ; 25(31): 31101-31112, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30187410

ABSTRACT

Environmental management of cellulose production waste and municipal sewage sludge appears to be substantiated due to various physicochemical properties of these wastes. The aim of the conducted research was to determine the effect of cellulose production waste and sewage sludge on yielding and heavy metal uptake by a plant mixture. The research was conducted under field experiment conditions, determining the fertilizer value of these wastes in the environmental aspect. The research was carried out in the years 2013-2016. Species composition of the plant mixture was adjusted to habitat conditions. It was established that, as compared with the cellulose production waste, the municipal sewage sludge used in the experiment had a higher content of macroelements. The content of heavy metals in the studied waste did not exceed the limits that condition their use in agriculture and reclamation. Applying only the cellulose production waste did not significantly decrease the yield of the plants. Municipal sewage sludge showed the highest yield-forming effect. Mixing the above-mentioned wastes and their application to soil had a significant effect on the increase in the plant mixture yield. The waste applied to soil also increased the content of Cr, Cd, Pb, Cu, and Zn in the plant mix. The level of heavy metal content in the plant mix did not exclude this biomass from being used for fodder or reclamation purposes. The cellulose production waste and municipal sewage sludge increased the heavy metal uptake by the plant mixture. The plant biomass extracted heavy metals from the sewage sludge more intensively than from the cellulose production waste. Among the analyzed heavy metals, the highest phytoremediation was recorded for Ni (30%), followed by Cd (20%), Cr (15%), Pb (10%), and the lowest for Cu (9%) and Zn (8%). Application of the cellulose production waste and sewage sludge to soil also increased the content of the studied heavy metals in soil. However, it did not cause deterioration of soil quality standards. Heterogeneity in the chemical composition of the wastes confirms that each batch intended to be used for environmental management should be subjected to chemical control.


Subject(s)
Cellulose , Fertilizers , Metals, Heavy/metabolism , Plants/metabolism , Sewage , Soil Pollutants/metabolism , Waste Products , Agriculture , Biodegradation, Environmental , Biomass
15.
Chem Pharm Bull (Tokyo) ; 66(3): 319-326, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29311435

ABSTRACT

In order to make full use of artemisinin production waste and thus to reduce the production cost of artemisinin, we developed an efficient and scalable method to isolate high-purity dihydroartemisinic acid from artemisinin production waste by combining anion-exchange resin with silica-gel column chromatography. The adsorption and desorption characteristics of dihydroartemisinic acid on 10 types of anion-exchange resin were investigated, and the results showed that the 717 anion-exchange resin exhibited the highest capacity of adsorption and desorption to dihydroartemisinic acid. Adsorption isotherms were established for the 717 anion-exchange resin and they fitted well with both Langmuir and Freundlich model. Dynamic adsorption and desorption properties of 717 anion-exchange resin were characterized to optimize the chromatographic conditions. Subsequently, the silica-gel column chromatography was performed and dihydroartemisinic acid with a purity of up to 98% (w/w) was obtained. Finally, the scale-up experiments validated the preparative separation of high-purity dihydroartemisinic acid from industrial waste developed in the present work. This work presented for the first time an isolation of dihydroartemisinic acid with a purity of 98% from Artemisia annua (A. annua) by-product, which adds more value to this crop and has the potential to lower the prices of anti-malarial drugs.


Subject(s)
Antimalarials/chemistry , Antimalarials/isolation & purification , Artemisinins/chemistry , Artemisinins/isolation & purification , Adsorption , Artemisia annua/chemistry , Chromatography, Liquid , Kinetics , Medical Waste , Solvents
16.
Waste Manag ; 34(11): 2036-46, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25022548

ABSTRACT

Molasses-based distilleries are one of the most polluting industries generating large volumes of high strength wastewater called vinasse. Different processes covering anaerobic, aerobic as well as physicochemical methods have been employed to treat this effluent. This study evaluated the microbial communities present in the vinasse during different stages of its treatment by traditional and molecular methods. The analysis of the efficiency of each treatment was performed by physicochemical parameters and toxicity analysis. The treatment of vinasse was performed in the following steps: high flow fermentation; filtration; chemical flakes; low-flow fermentation; filtration; and neutralization. The physicochemical analysis in different stages of the vinasse treatment demonstrated that phases of treatment influenced the performance of the evaluated parameters. Among the 37 parameters, 9 were within the limits established by the Commission for Environmental Policy of Minas Gerais, Brazil (COPAM), especially BOD (96.7% of pollution reduction), suspended solids (99.9%), pH, copper (88%), iron (92.9%), and manganese (88%). Some parameters, even after treatment, did not fit the maximum allowed by legislation. The microbial population decreased reaching 3 log CFU/ml present in the steps of the flakes chemical and disinfection treatment of vinasse. Lactobacillus brevis and Pichia kudriavzevii were present in all stages of the treatments, showing that these microorganisms were resistant and demonstrated that they might be important in the treatment of vinasse. The vinasse showed a significant reduction of pollution load after the disinfection treatment however still should not be discarded into water bodies because the high values of tannins and sediment solids, but suggest the use of the effluent in the cooling coil during the distillation process of the beverage.


Subject(s)
Industrial Waste/analysis , Microbiota/drug effects , Recycling , Waste Disposal, Fluid/methods , Water Pollution, Chemical/prevention & control , Aerobiosis , Brazil , Fermentation , Molasses
SELECTION OF CITATIONS
SEARCH DETAIL